Rosetta 3.4
Public Member Functions
core::scoring::rna::RNA_FA_Stack Class Reference

#include <RNA_FA_Stack.hh>

Inheritance diagram for core::scoring::rna::RNA_FA_Stack:
Inheritance graph
[legend]
Collaboration diagram for core::scoring::rna::RNA_FA_Stack:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 RNA_FA_Stack ()
virtual methods::EnergyMethodOP clone () const
 clone
virtual void setup_for_scoring (pose::Pose &pose, ScoreFunction const &) const
virtual void setup_for_derivatives (pose::Pose &pose, ScoreFunction const &) const
 Called immediately before atom- and DOF-derivatives are calculated allowing the derived class a chance to prepare for future calls.
virtual void residue_pair_energy (conformation::Residue const &rsd1, conformation::Residue const &rsd2, pose::Pose const &pose, ScoreFunction const &, EnergyMap &emap) const
 Evaluate the interaction between a given residue pair accumulating the unweighted energies in an EnergyMap.
virtual void eval_intrares_energy (conformation::Residue const &, pose::Pose const &, ScoreFunction const &, EnergyMap &) const
 Evaluate the intra-residue energy for a given residue.
virtual void eval_atom_derivative (id::AtomID const &atom_id, pose::Pose const &pose, kinematics::DomainMap const &domain_map, ScoreFunction const &scorefxn, EnergyMap const &weights, Vector &F1, Vector &F2) const
 Evaluate the XYZ derivative for an atom in the pose. Called during the atomtree derivative calculation, atom_tree_minimize.cc, through the ScoreFunction::eval_atom_derivative intermediary. F1 and F2 should not zeroed, rather, this class should accumulate its contribution from this atom's XYZ derivative.
virtual bool defines_intrares_energy (EnergyMap const &) const
 Two body energies are able to define intra-residue energies, and to do so only in the presence of certain non-zero weights. The ScoreFunction will hand over its weight set as it asks whether the energy method defines an intraresidue energy or not.
virtual Distance atomic_interaction_cutoff () const
 how far apart must two heavy atoms be to have a zero interaction energy?
virtual void indicate_required_context_graphs (utility::vector1< bool > &context_graphs_required) const
 Indicate in the context-graphs-required list which context-graphs this energy method requires that the Pose maintain when doing neighbor evaluation. Context graphs are allowed.

Constructor & Destructor Documentation

core::scoring::rna::RNA_FA_Stack::RNA_FA_Stack ( )

Member Function Documentation

virtual Distance core::scoring::rna::RNA_FA_Stack::atomic_interaction_cutoff ( ) const [virtual]

how far apart must two heavy atoms be to have a zero interaction energy?

If hydrogen atoms interact at the same range as heavy atoms, then this distance should build-in a 2 * max-bound-h-distance-cutoff buffer. There is an improper mixing here between run-time aquired chemical knowledge (max-bound-h-distance-cutoff) and compile time aquired scoring knowledge (max atom cutoff); this could be resolved by adding a boolean uses_hydrogen_interaction_distance() to the SRTBEnergy class along with a method of the ChemicalManager max_bound_h_distance_cutoff().

Implements core::scoring::methods::ShortRangeTwoBodyEnergy.

virtual methods::EnergyMethodOP core::scoring::rna::RNA_FA_Stack::clone ( ) const [virtual]
virtual bool core::scoring::rna::RNA_FA_Stack::defines_intrares_energy ( EnergyMap const &  weights) const [inline, virtual]

Two body energies are able to define intra-residue energies, and to do so only in the presence of certain non-zero weights. The ScoreFunction will hand over its weight set as it asks whether the energy method defines an intraresidue energy or not.

For example, the Etable method defines intra-residue energies only when one or more of the fa_intra_{atr,rep,sol} weights are non-zero.

Implements core::scoring::methods::TwoBodyEnergy.

virtual void core::scoring::rna::RNA_FA_Stack::eval_atom_derivative ( id::AtomID const &  id,
pose::Pose const &  pose,
kinematics::DomainMap const &  domain_map,
ScoreFunction const &  sfxn,
EnergyMap const &  emap,
Vector F1,
Vector F2 
) const [virtual]

Evaluate the XYZ derivative for an atom in the pose. Called during the atomtree derivative calculation, atom_tree_minimize.cc, through the ScoreFunction::eval_atom_derivative intermediary. F1 and F2 should not zeroed, rather, this class should accumulate its contribution from this atom's XYZ derivative.

The derivative scheme is based on that of Abe, Braun, Noguti and Go (1984) "Rapid Calculation of First and Second Derivatives of Conformational Energy with Respect to Dihedral Angles for Proteins. General Recurrent Equations" Computers & Chemistry 8(4) pp. 239-247. F1 and F2 correspond roughly to Fa and Ga, respectively, of equations 7a & 7b in that paper.

default implementation does not alter either the F1 or F2 vectors.

Reimplemented from core::scoring::methods::EnergyMethod.

virtual void core::scoring::rna::RNA_FA_Stack::eval_intrares_energy ( conformation::Residue const &  rsd,
pose::Pose const &  pose,
ScoreFunction const &  sfxn,
EnergyMap emap 
) const [inline, virtual]

Evaluate the intra-residue energy for a given residue.

Implements core::scoring::methods::TwoBodyEnergy.

virtual void core::scoring::rna::RNA_FA_Stack::indicate_required_context_graphs ( utility::vector1< bool > &  context_graphs_required) const [virtual]

Indicate in the context-graphs-required list which context-graphs this energy method requires that the Pose maintain when doing neighbor evaluation. Context graphs are allowed.

Implements core::scoring::methods::EnergyMethod.

virtual void core::scoring::rna::RNA_FA_Stack::residue_pair_energy ( conformation::Residue const &  rsd1,
conformation::Residue const &  rsd2,
pose::Pose const &  pose,
ScoreFunction const &  sfxn,
EnergyMap emap 
) const [virtual]

Evaluate the interaction between a given residue pair accumulating the unweighted energies in an EnergyMap.

Implements core::scoring::methods::TwoBodyEnergy.

virtual void core::scoring::rna::RNA_FA_Stack::setup_for_derivatives ( pose::Pose pose,
ScoreFunction const &  sfxn 
) const [virtual]

Called immediately before atom- and DOF-derivatives are calculated allowing the derived class a chance to prepare for future calls.

default implementation noop

Reimplemented from core::scoring::methods::EnergyMethod.

virtual void core::scoring::rna::RNA_FA_Stack::setup_for_scoring ( pose::Pose pose,
ScoreFunction const &   
) const [virtual]

The documentation for this class was generated from the following file:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines