Rosetta Utilities  2014.35
Namespaces | Macros | Typedefs | Functions | Variables
dixon.cc File Reference

computes the dixon resultant More...

#include <numeric/kinematic_closure/dixon.hh>
#include <numeric/types.hh>
#include <numeric/kinematic_closure/sturm.hh>
#include <numeric/kinematic_closure/kinematic_closure_helpers.hh>
#include <numeric/linear_algebra/GeneralizedEigenSolver.hh>
#include <Eigen/Dense>
#include <cmath>
#include <iostream>

Namespaces

 numeric
 Unit headers.
 
 numeric::kinematic_closure
 

Macros

#define PP4x2_VECSIZE   7
 
#define DIXON_SIZE   8
 
#define DIXON_RESULTANT_SIZE   3
 

Typedefs

typedef Eigen::Matrix< Real, 8, 8 > numeric::kinematic_closure::Matrix8
 
typedef Eigen::Matrix< Real, 16, 16 > numeric::kinematic_closure::Matrix16
 
typedef Eigen::Matrix< Real,
Eigen::Dynamic, 1, 0, 16, 1 > 
numeric::kinematic_closure::Vector16
 
typedef
linear_algebra::GeneralizedEigenSolver
< Matrix16
numeric::kinematic_closure::SolverType
 
typedef vector1< Real > numeric::kinematic_closure::PseudoVector
 
typedef vector1< PseudoVectornumeric::kinematic_closure::PseudoMatrix
 

Functions

Eigen::IOFormat numeric::kinematic_closure::scipy (8, 0,", ",",\n","[","]","[","]")
 
void numeric::kinematic_closure::point_value2 (const utility::vector1< Real > &A, const utility::vector1< Real > &t, utility::vector1< Real > &C)
 dixon functions /// More...
 
void numeric::kinematic_closure::point_value4 (const utility::vector1< Real > &A, const utility::vector1< Real > &t, utility::vector1< Real > &C)
 
void numeric::kinematic_closure::point_value6 (const utility::vector1< Real > &B, const utility::vector1< Real > &t, utility::vector1< Real > &C)
 
void numeric::kinematic_closure::point_value8 (const utility::vector1< Real > &A, const utility::vector1< Real > &t, utility::vector1< Real > &C)
 
void numeric::kinematic_closure::point_value16 (const utility::vector1< Real > &A, const utility::vector1< Real > &t, utility::vector1< Real > &C)
 
void numeric::kinematic_closure::polyProduct2x2 (const utility::vector1< Real > &A, const utility::vector1< Real > &B, utility::vector1< Real > &C)
 
void numeric::kinematic_closure::polyProduct4x2 (const utility::vector1< Real > &A, const utility::vector1< Real > &B, utility::vector1< Real > &C)
 
void numeric::kinematic_closure::polyProduct4x4 (const utility::vector1< Real > &A, const utility::vector1< Real > &B, utility::vector1< Real > &C)
 
void numeric::kinematic_closure::polyProduct4sq (const utility::vector1< Real > &A, utility::vector1< Real > &C)
 
void numeric::kinematic_closure::polyProduct6x6 (const utility::vector1< Real > &A, const utility::vector1< Real > &B, utility::vector1< Real > &C)
 
void numeric::kinematic_closure::polyProduct12x4 (const utility::vector1< Real > &A, const utility::vector1< Real > &B, utility::vector1< Real > &C)
 
void numeric::kinematic_closure::polyProduct8x8 (const utility::vector1< Real > &A, const utility::vector1< Real > &B, utility::vector1< Real > &C)
 
void numeric::kinematic_closure::polyProduct8sq (const utility::vector1< Real > &A, utility::vector1< Real > &C)
 
void numeric::kinematic_closure::vectorDiff (const utility::vector1< Real > &A, const utility::vector1< Real > &B, utility::vector1< Real > &C)
 
void numeric::kinematic_closure::dixonResultant (const utility::vector1< utility::vector1< Real > > &A, const utility::vector1< utility::vector1< Real > > &B, const utility::vector1< utility::vector1< Real > > &C, const utility::vector1< utility::vector1< Real > > &D, utility::vector1< utility::vector1< utility::vector1< Real > > > &R)
 
void numeric::kinematic_closure::build_dixon_matrices (PseudoMatrix const &A, PseudoMatrix const &B, PseudoMatrix const &C, PseudoMatrix const &D, Matrix8 &R0, Matrix8 &R1, Matrix8 &R2)
 
void numeric::kinematic_closure::build_sin_and_cos (PseudoMatrix const &u, PseudoMatrix &sin, PseudoMatrix &cos)
 
void numeric::kinematic_closure::dixon_eig (PseudoMatrix const &A, PseudoMatrix const &B, PseudoMatrix const &C, PseudoMatrix const &D, vector1< int > const &, PseudoMatrix &cos, PseudoMatrix &sin, PseudoMatrix &u, int &num_solutions)
 
void numeric::kinematic_closure::dixon_sturm (const utility::vector1< utility::vector1< Real > > &A, const utility::vector1< utility::vector1< Real > > &B, const utility::vector1< utility::vector1< Real > > &C, const utility::vector1< utility::vector1< Real > > &D, const utility::vector1< int > &order, utility::vector1< utility::vector1< Real > > &cos, utility::vector1< utility::vector1< Real > > &sin, utility::vector1< utility::vector1< Real > > &tau, int &nsol)
 
void numeric::kinematic_closure::test_point_value2 ()
 
void numeric::kinematic_closure::test_polyProduct6x6 ()
 
void numeric::kinematic_closure::test_polyProduct4sq ()
 
void numeric::kinematic_closure::test_polyProduct4x4 ()
 
void numeric::kinematic_closure::test_polyProduct4x2 ()
 
void numeric::kinematic_closure::test_polyProduct2x2 ()
 
void numeric::kinematic_closure::test_dixon ()
 

Variables

string numeric::kinematic_closure::skipl = "\n\n"
 

Detailed Description

computes the dixon resultant

Author
Evangelos A. Coutsias
Daniel J. Mandell

Macro Definition Documentation

#define DIXON_RESULTANT_SIZE   3
#define DIXON_SIZE   8
#define PP4x2_VECSIZE   7