
265

 Chapter 17

 Redesigning the Specifi city of Protein–DNA Interactions
with Rosetta

 Summer Thyme and David Baker

 Abstract

 Building protein tools that can selectively bind or cleave specifi c DNA sequences requires effi cient technologies
for modifying protein–DNA interactions. Computational design is one method for accomplishing this goal.
In this chapter, we present the current state of protein–DNA interface design with the Rosetta macromo-
lecular modeling program. The LAGLIDADG endonuclease family of DNA-cleaving enzymes, under
study as potential gene therapy reagents, has been the main testing ground for these in silico protocols.
At this time, the computational methods are most useful for designing endonuclease variants that can
accommodate small numbers of target site substitutions. Attempts to engineer for more extensive interface
changes will likely benefi t from an approach that uses the computational design results in conjunction with
a high-throughput directed evolution or screening procedure. The family of enzymes presents an engi-
neering challenge because their interfaces are highly integrated and there is signifi cant coordination
between the binding and catalysis events. Future developments in the computational algorithms depend
on experimental feedback to improve understanding and modeling of these complex enzymatic features.
This chapter presents both the basic method of design that has been successfully used to modulate specifi city
and more advanced procedures that incorporate DNA fl exibility and other properties that are likely neces-
sary for reliable modeling of more extensive target site changes.

 Key words Protein–DNA interactions , Computational design , Rosetta , Specifi city , In silico prediction ,
 Gene targeting , Direct readout

1 Introduction

 Direct interactions between amino acids and DNA nucleotides are
an important determinant of the substrate preference of a DNA-
binding protein. A position in a binding site where the protein
displays a preference for one nucleotide over the others is consid-
ered to have high specifi city [1 – 3]. These positions are often char-
acterized by strong direct interactions that are disrupted when the
favored base is replaced (Fig. 1 , see Notes 1 and 2). Being able to
redesign interface residues to alter this specifi city would enable the
targeting of a DNA-binding protein to a site of interest (see Note 3).
This technology is particularly useful for targeting genome-specifi c

David R. Edgell (ed.), Homing Endonucleases: Methods and Protocols, Methods in Molecular Biology,
vol. 1123, DOI 10.1007/978-1-62703-968-0_17, © Springer Science+Business Media New York 2014

266

DNA cleavage enzymes, such as LAGLIDADG endonucleases [4 , 5],
to sites that are relevant to genome engineering and gene therapy
applications [6 – 9].

 Computational methods for engineering specifi city offer an
effi cient alternative to more labor-intensive experimental procedures,
such as directed evolution [10 – 13]. Additionally, experimental and
in silico approaches are not mutually exclusive, as the predicted
results can also be used to guide the design of libraries for screening
and enhance the likelihood of successfully identifying an active
variant [14 – 16]. The Rosetta program for macromolecular modeling
and design [17] has been successfully used to alter the specifi city of

A:T

C:G
T:A

Wild-type
G:C

+5.9
REUs

+7.1
REUs

+21.9
REUs

Rosetta

a b

c d

 Fig. 1 The predicted role of direct interactions in protein–DNA specifi city. Each panel represents the structure with
the mean energy from a set of 56 repacks done with Rosetta. The wild-type base pair is the G:C at position −6 or
409 (crystal structure numbering) in the 2QOJ pdb. The native 2QOJ structure is shown in gray , with native hydro-
gen bonds shown in yellow , and the Rosetta structures are shown in white , with predicted hydrogen bonds shown
in red . The wild-type base pair has a very high predicted specifi city when compared to the three alternative base
pairs. (a) The repacked structure for the wild-type base pair maintains the energetically favorable direct hydrogen
bonds that are in the crystal structure. (b) The A:T base pair loses hydrogen bonding, and the methyl group of the
thymine nucleotide has signifi cant repulsion (highlighted by spheres) with a neighboring threonine side chain.
(c) The C:G base pair loses hydrogen bonding. (d) The T:A base pair loses hydrogen bonding

Summer Thyme and David Baker

267

several LAGLIDADG homing endonucleases [18 – 21]. Describing
the protocols used to computationally redesign endonuclease spec-
ifi city with Rosetta is the focus of this chapter.

 The main design algorithm in Rosetta searches protein sequence
and rotameric [22] space to fi nd a set of amino acids that is compat-
ible with the DNA sequence being targeted (see Note 4). Each
attempted amino acid combination is evaluated with a physically
based energy function in order to identify the lowest-energy
sequence [17 , 23]. The majority of the previous endonuclease rede-
sign successes [18 – 21] utilized a standard fi xed-backbone algo-
rithm, in which both the protein and DNA backbones in the starting
crystal structure are not fl exible. This chapter details this basic
method and additionally introduces some alternative DNA inter-
face design protocols. These advanced methods include fl exibility
on one or both sides of the protein–DNA interface [21 , 24], explicit
design for specifi city using a genetic algorithm [19 , 21], and the use
of libraries of native-like interactions (called motifs) to guide rota-
mer sampling [23 , 25]. These approaches provide ways to diversify
design results over the fi xed-backbone approximation available in
release versions of Rosetta.

 Computational design is an effi cient approach for altering
specifi city, as long as the particular problem of interest is feasible
with the currently available technology. The majority of the previ-
ously published successes were limited to single base-pair switches
in the twenty base-pair target sequence characteristic of
LAGLIDADG endonucleases [18 – 20]. The exception that stands
out was design for a triple base pair. However, the crystal structure
of this variant revealed extensive DNA movement and interface
coordination that were not predicted by the standard Rosetta
modeling [21]. Directed evolution methods have produced several
large-scale specifi city shifts, but achieving consistent success and
maintaining the exquisite specifi city characteristic of the natural
endonucleases [19 , 26] are still a challenge for every approach
[27 – 29]. A structure obtained for one of these evolved enzymes
also showed extensive interface rearrangements that are not con-
sidered in standard computational design protocols [27]. All of
these results indicate that there are features of the LAGLIDAG
interface that are not being accurately captured by the models.

 LAGLIDADG endonucleases have highly integrated inter-
faces, in which binding and catalysis are coordinated [19]. While
this characteristic is advantageous for a gene-targeting reagent, it
signifi cantly increases the challenge of specifi city modulation
because there is no currently understood recognition code ([30 ,
 31], see Note 5). This lack of a recognition code makes computa-
tion even more necessary, albeit harder, because multiple base-pair
specifi city switches need to be engineered as one unit, instead of
being engineered separately and then recombined. Directed evolu-
tion approaches are limited in how many amino acids can be

Protein-DNA Interface Design

268

simultaneously randomized. One way to utilize the power of
computational design is to identify variants with low levels of a
desired feature and then use these proteins as starting points for
directed evolution optimization [32 – 34]. Another use of compu-
tation is that it can suggest the inclusion of only certain amino acid
types at each position in a protein library allows for many more
positions to be concurrently explored. For example, the core posi-
tions that buttress the DNA-interacting residues and can be impor-
tant for activity [35] are often excluded from libraries [11 , 29] in
favor of focusing on the interface residues that make direct con-
tacts. A concerted approach is important because it is likely that a
stringent alignment of the N- and C-terminal domains is required
to facilitate catalysis and it is mediated by residues not in the pro-
tein–DNA interface [27 , 28 , 36]. There has been effectively no
success at altering the specifi city of the central four base pairs where
catalysis occurs, presumably due to these alignment criteria and
indirect readout of the DNA [37 , 38], neither of which is modeled
or well understood. Engineering pipelines that iterate between
computational design, directed evolution, and detailed kinetic
analyses are poised to discover the missing components of these
computational models.

2 Materials

 1. The latest release version of the Rosetta software suite (Rosetta
3.4 as of 2012) is available from http://www.rosettacom-
mons.org and is free of charge for academics and nonprofi t
users. A comprehensive manual for the software is also avail-
able from the same website. For conducting protocols that are
not included in the release version, the developer’s version of
the code must be obtained. Protocols that require these
extended capabilities are noted throughout this chapter.
A sponsor from a Rosetta lab is required for access to this
repository, and a partial list of labs with members that can pro-
vide sponsorship or collaboration is included in Note 6 .

 2. Compiling the Rosetta code requires either an external com-
piling software or Python (version >= 2.2) to run the included
scons.py script that runs a local version of the compiling soft-
ware SCons that comes packaged with Rosetta.

 3. The Rosetta software runs on multiple platforms (see manual
for list). However, it is suggested that a Unix or Linux cluster
be used in order to submit many runs in parallel and enhance
calculation effi ciency.

 4. A high-resolution crystal structure (preferably <3.0 Å) of the
protein of interest bound to DNA (see Note 7).

Summer Thyme and David Baker

269

3 Methods

 1. Obtain a current copy of the release version of Rosetta (see
Subheading 2).

 2. Open a terminal window (see Note 8).
 3. Enter the Rosetta source directory that contains the scons.py

fi le. Type “scons bin mode=release extras=static” to compile a
production speed version of the code that can be ported to
different platforms and computer systems (see Note 9).

 4. If the code is going to be run on a different computer system
than it was compiled, the rosettaDNA executable must be
moved to that system by typing “scp ./bin/rosettaDNA.static.
linuxgccrelease computerwhereitwillberun.” The entire
rosetta_database folder must also be moved by typing “scp -r ../
rosetta_database/ computerwhereitwillberun.”

 5. Make a directory where the code will be run and the output
collected by entering the desired location and typing “mkdir
nameofdirectory” (see Notes 10 and 11).

 6. Make a fi le that contains the arguments read by the Rosetta
program with your favorite text editor (Fig. 2). The editor Vi
is likely present in your Linux/Unix system. To use Vi to make
the arguments fi le, type “vi nameofargsfi le,” enter insertion
mode by typing “i,” and then type the desired fl ags using
Fig. 2 as a guide (see Note 12).

 7. Make an XML script fi le (see Note 13) that contains protocol
instructions given to the program through RosettaScripts [17 ,
 39]. This fi le can be made by using Fig. 3 as a guide for the
content and following the same Vi instructions described in
 step 6 (all other fi les in future steps can also be made or modi-
fi ed with Vi).

 8. The protein interface positions to be designed will be automati-
cally calculated based on the “dna_defs” and “z_cutoff” fl ags
that are part of the operations (TASKOPERATIONS) included
in the XML fi le (Fig. 3). However, a type of fi le known as a
resfi le (Fig. 4) is available if the user would instead prefer to
allow only a subset of amino acid types and designable posi-
tions. The addition of the line “-resfi le nameoffi le” to the args
fi le (Fig. 2) will enable the resfi le to override automatic detec-
tion of the interface residues. The XML script should also be
modifi ed to add the task operation “<ReadResfi le name=RRF/>”
and replace the use of AUTOprot with RRF in the mover. The
“dna_def” option is also no longer necessary in the DnaInt
operation because the target base is specifi ed in the resfi le.

 9. Choose an energy function that is optimized for protein–DNA
interactions [21 – 24] and make a fi le containing the necessary

3.1 Standard
Protein–DNA Interface
Design

Protein-DNA Interface Design

270

weights for each energy function component (Fig. 5). The name
of the energy function is the input for the fl ag “-score::weights
nameoffi le” (Fig. 2).

 10. Modify the Rosetta database to go with the optimized energy
function shown in Fig. 5 . The necessary changes are listed in
 Note 14 [23].

 11. Run code by submitting to whatever computer cluster you are
using or by typing “rosettaDNA.static.linuxgccrelease @
nameofargsfi le” (see Notes 15 and 16).

 Follow instructions in Subheading 3.1 with the following described
variations to the XML script (Fig. 3) and arguments fi les (Fig. 2).
The specifi city and binding energy calculations enable the user to
identify the designs with the most desirable properties (see Note 17).

3.2 Assessment
of Designs Using
Specifi city and
Binding Energy
Calculations

-in:ignore_unrecognized_res # ignore anything in the pdb structure that is
not recognizable
-file:s 2QOJ.pdb # input structure
-mute all # no output into an output file, skip this flag off when debugging
and include for large-scale runs
-unmute protocols.dna # unmute a subset of the output if desired
-score::weights rosetta_database/scoring/weights/optimizedenergyfxn.wts
energy function for evaluating structures (see Fig. 5)
-score:output_residue_energies # include information in the pdb about the
interaction energies of residues in the design
-run:output_hbond_info # include information in the pdb about the
hydrogen bonding of residues in the design
-database rosetta_database # required Rosetta database, see Note 17 for
useful changes to the database
-ex1 # extra rotamer sampling around chi angle 1
-ex2 # extra rotamer sampling around chi angle 2
-ex1aro::level 6 # even more extra rotamer sampling for aromatic residues

can have large repulsion scores if the rotamer is not in the optimal position.
-ex2aro::level 6 # even more extra rotamer sampling for aromatic residues
around chi angle 2
-exdna::level 4 # use DNA rotamers and include extra sampling (inclusion

-jd2:dd_parser # use the parser protocols
-parser:protocol XML.scriptfile # XML script (see Fig. 3)
-overwrite # if a pdb with the same name already exists in the directory
where the design occurring, then overwrite the old pdb
-out:prefix design_ # an optional prefix to add to the name of designs

of this flag is highly advised for protein-DNA design)

around chi angle 1. This flag is recommended because aromatic residues

 Fig. 2 Example arguments fi le. This fi le controls the parameters of the design run
or specifi city calculation. All writing after the # mark is a comment that is not
read in by the Rosetta program

Summer Thyme and David Baker

271

 The simplest method of specifi city prediction [2 , 21] is the addition
of the two lines to the XML fi le. This method allows for multiple
repacks to be done, but it is not suitable for protocols that involve
any backbone movement because the backbone is optimized for
the base pair originally designed for.

 1. Replace line a with line b in the XML fi le (Fig. 3) and run the
protocol exactly as described in Subheading 3.1 , but with this
new XML fi le instead of the original:

 line a : <DnaInterfacePacker name=DnaPack scorefxn=DNA task_
operations=IFC,IC,AUTOprot,DnaInt/>

 line b : <DnaInterfacePacker name=DnaPack scorefxn=DNA task_
operations=IFC,IC,AUTOprot,DnaInt binding=1 probe_
specifi city=3/>

 2. The number following the added options refers to the number
of repacks, the lowest energy of which is used in the calculations.
Three is a good choice for reducing noise in the results. A repack
is a search similar to the design procedure except that only the
rotameric state is varied while amino acid types are fi xed.

 3. The calculation results are located inside the output pdb fi le
for each design. Open the fi le with a text-editing program to
view the data (see Note 18).

3.2.1 Automatic
Specifi city and Binding
Energy Prediction
Following
Fixed-Backbone Design

<dock_design>
<TASKOPERATIONS>
<InitializeFromCommandline name=IFC/> # use the information in the args file to supplement this XML
<IncludeCurrent name=IC/> # includes the rotamers in the input structure (may not want to use)
<RestrictDesignToProteinDNAInterface name= DnaInt base_only =1 z_cutoff =6.0 dna_defs =Z.409.GUA/> #

make the target site substitution of interest (chainID.crystalposition.type) and designate the sphere of residues
surrounding it that are designable and packable

<OperateOnCertainResidues name=AUTOprot> # works with the DnaInt operation to enable residues to be
chosen for design and packing if they are marked as AUTO

<AddBehaviorRLT behavior=AUTO/>
<ResidueHasProperty property=PROTEIN/>
</OperateOnCertainResidues>

</TASKOPERATIONS>
<SCOREFXNS>
<DNA weights=optimizedenergyfxn/> # energy function for design evaluation, this file must be put in the

directory (ie, rosetta_database/scoring/weights/optimizedenergyfxn.wts)
</SCOREFXNS>
<FILTERS>

<FalseFilter name=falsefilter/> # RosettaScripts has the ability to only output designs that pass a designated

</FILTERS>
<MOVERS>

<DnaInterfacePacker name=DnaPack scorefxn=DNA task_operations=IFC,IC,AUTOprot,DnaInt/>
</MOVERS>
<PROTOCOLS>
<Add mover_name=DnaPack/>

</PROTOCOLS>
</dock_design>

filter. This functionality is not being used here.

 Fig. 3 Example RosettaScripts XML fi le. This fi le can be used to set up and modify Rosetta protocols. All writing
after the # mark is a comment that is not read in by the Rosetta program

Protein-DNA Interface Design

272

 The main feature of a specifi city calculation is that it is an exploration
of rotameric and potentially backbone space in order to fi nd and
compare the energy of a set of given sequences. Therefore, the
protocol used for the design procedure may not be optimal for
doing these analyses. For example, the discreteness of rotamers is
an approximation that is necessary because of computational limits
when all amino acids are being considered. However, when the
amino acid sequence is fi xed, the number of rotamers included in
the calculation can be greatly increased, and any negative effect of
the approximation is lessened [23]. Flexible backbone calculations
for specifi city enable the protein backbone to be optimized for
each particular base, reducing any energetic bias for the base pair
in the crystal structure over the competing base types.

3.2.2 Protocol for
Specifi city Calculation
That Is Suitable Following
Any Design Procedure

AUTO # all protein positions not
explicitly noted are to be marked as
AUTO, the same as using the
AUTOprot operation
start
28 A PIKAA L # forces amino acid L
at position 28 on chain A
83 A PIKAA R
-12 C NATRO # g, fixes the native
rotamer
-11 C NATRO # c
-10 C NATRO # a
-9 C NATRO # g
-8 C NATRO # a
-7 C NATAA # a, fixes the native
residue type, but allows different
rotamers
-6 C TARGET GUA # c, target
base, same as using the dna_def
option, but DNA is required to be
explicit in the resfile
-5 C NATAA # g
-4 C NATRO # t
-3 C NATRO # c
-2 C NATRO # g
-1 C NATRO # t
1 D NATRO # a
2 D NATRO # c
3 D NATRO # g
4 D NATRO # a
5 D NATAA # c
6 D TARGET CYT # g
7 D NATAA # t
8 D NATRO # t
9 D NATRO # c
10 D NATRO # t
11 D NATRO # g
12 D NATRO # c

 Fig. 4 Example resfi le. This fi le is used if specifi c protein positions or amino acid
types need to be forced in the design run. It is an alternative to allowing the loca-
tion of the target substitution to control the designable protein positions. All writ-
ing after the # mark is a comment that is not read in by the Rosetta program

Summer Thyme and David Baker

273

 1. Modify the XML script to fi x the protein sequence of the structure
being analyzed (most likely the output of a previous design
calculation). In the TASKOPERATIONS section of the XML
fi le, the operation to fi x the protein sequence must be added
by adding the following four lines:

 <OperateOnCertainResidues name=ProtNoDes>
 <RestrictToRepackingRLT/>
 <ResidueHasProperty property=PROTEIN/>
 </OperateOnCertainResidues>

 To use this operation, the DnaInterfacePacker mover must be
changed to the following:

 <DnaInterfacePacker name=DnaPack scorefxn=DNA task_operati
ons=IFC,IC,AUTOprot,ProtNoDes,DnaInt/>

 2. If desired, modify the arguments fi le to increase the number of
rotamers. The addition of the fl ags “-ex3” and “-ex4” is a
 reasonable increase. Further increases can be enabled by using
the “::level #” addition to any of the -ex fl ags. The available
levels are 1–7. An advanced XML user can add the extra rotam-
ers through the ExtraRotamersGeneric operation and complete
this specifi city calculation directly after design in one run.

 3. Set up four separate runs, one for each base type (or more if
the target has multiple base-pair substitutions. Do runs for
whichever competing states are to be compared).

METHOD_WEIGHTS ref -0.3 -0.7 -0.75 -0.51 0.95 -0.2 0.8
-0.7 -1.1 -0.65 -0.9 -0.8 -0.5 -0.6 -0.45 -0.9 -1.0 -0.7 2.3 1.1 #
reference weights that are for each amino acid type

fa_atr 0.95 # attractive forces between residues
fa_rep 0.44 # repulsive forces between residues
fa_intra_rep 0.004 # repulsion within a sidechain
fa_sol 0.65 # one component of desolvation
lk_ball 0.325 # newer orientation-dependent desolvation
lk_ball_iso -0.325 # newer orientation-dependent desolvation
hack_elec 0.5 # coulombic electrostatics
fa_dun 0.56 # probability for each approximated rotamer
ref 1 # weight for the reference energies
hbond_lr_bb 1.17 # hydrogen bonding
hbond_sr_bb 1.17 # hydrogen bonding
hbond_bb_sc 1.17 # hydrogen bonding
hbond_sc 1.17 # hydrogen bonding
p_aa_pp 0.64 # probability of amino acid type given
backbone
dslf_ss_dst 0.5 # disulphides
dslf_cs_ang 2 # disulphides
dslf_ss_dih 5 # disulphides
dslf_ca_dih 5 # disulphides
pro_close 1.0 # proline ring closure

 Fig. 5 Example energy function fi le. This energy function was optimized to produce
high sequence recovery of protein–DNA interactions over a benchmark set of
proteins [23]. All writing after the # mark is a comment that is not read in by the
Rosetta program

Protein-DNA Interface Design

274

 4. Complete a minimum of ten runs per base type for a fi xed-
backbone approach and at least 50 (4× or more) for any
approach involving fl exible backbone.

 5. Collect the total_score value from inside of each pdb. The
specifi city can be calculated from the lowest-energy structure
or from the mean or median of the energies of all structures.
A comparison of all these three specifi city calculations is most
informative (see Notes 19 and 20).

 6. The simplest way to access these values without writing a script
is to execute the command “grep total_score *pdb” in the direc-
tory that contains the pdbs you are interested in analyzing.

 Follow instructions in Subheading 3.1 with the following described
variations to the XML script (Fig. 3) and arguments fi les (Fig. 2).
Protein backbone fl exibility is accessible through the parser proto-
cols and is in the release version of the code.

 1. Modify the XML fi le to include a second mover before the
 standard design mover (DnaInterfacePacker). The line to add is
 <DesignProteinBackboneAroundDNA name=bb scorefxn=
DNA task_operations=IFC,IC,AUTOprot,DnaInt type=ccd
gapspan=4 spread=3 cycles_outer=3 cycles_inner=1 temp_ini-
tial=2 temp_fi nal=0.6/>

 2. Additionally, the following line must be added after the line
“<Add mover_name=DnaPack/>”:
 <Add mover_name=bb/>

 3. The DesignProteinBackboneAroundDNA enables the ccd
backbone movement [40 , 41]. An advanced user of
RosettaScripts and the XML format could explore the protein
backbone space with alternative protocols and then use those
structures as input for standard design (see Note 21).

 4. The diversity of the results will be signifi cantly increased; thus,
more runs are required to explore the design possibilities.

 Multistate design is a method to explicitly design for one state and
against others [42 , 43]. In the case of protein–DNA design, those
states are the targeted bases and the alternative bases [19 , 21]. This
method is accessible through the parser protocols and is in the
release version of the code. Follow instructions in Subheading 3.1
with the following variations to the XML script (Fig. 3).

 1. Modify the XML fi le by replacing the standard DNA design
mover with the following mover for doing multistate:
 <DnaInterfaceMultiStateDesign name=msd scorefxn=DNA
task_operations=IFC,IC,AUTOprot,DnaInt pop_size=20
num_packs=1 numresults=0 boltz_temp=2 anchor_offset=15
mutate_rate=0.8 generations=5/>

3.3 Advanced
Design Modes

3.3.1 Protein Flexibility

3.3.2 Multistate Design

Summer Thyme and David Baker

275

 2. Additionally, the line “<Add mover_name=DnaPack/>” must
be replaced with the line:
 <Add mover_name=msd/>

 3. All of the parameters of the genetic algorithm can be varied,
and the ones in the above line are testing parameters. Refer to
cited literature [19 , 21 , 42] to identify good starting parame-
ters for a particular design challenge.

 Crystal structures of engineered proteins indicate that DNA fl exi-
bility is a critical component of target site recognition [21 , 27].
The DNA movement protocols in Rosetta [23 , 24] are more
experimental than the standard design methods and are undergo-
ing signifi cant development.

 1. Acquire access to the developer’s version of the code
(see Subheading 2 and Note 22).

 2. There is no RosettaScripts capability outside of the trunk ver-
sion of Rosetta. Therefore there are separately compiled apps
required for each protocol instead of one app with access to
many movers through an XML fi le.

 3. Compile the dna_fragment_rebuild_with_motifs app as a fi rst
step toward using DNA fl exibility, or contact the people listed
in Note 22 to receive instructions or begin collaborations to
access more advanced versions of the code.

 4. Exact instructions and arguments fi les required for using this
app are available in the supplemental material of reference [23].

 Multiple low-energy solutions exist for most protein engineering
challenges. The standard design method tends to produce two or
three different solutions at the most. Using computation to guide
library design [14 , 15] depends on having multiple designs to
combine in the selection process. Flexible backbone methods can
increase the number of solutions, but these solutions may not
refl ect the true potential movements of backbones because model-
ing of fl exibility is a challenging problem. The high-temp packer
approach increases the temperature that the algorithm driving the
design process converges to and thus increases the chance of pro-
ducing a design that is low energy, but not the predicted lowest
energy. The energy function used in the design process may not be
perfectly optimized for every design situation. Being able to pro-
duce designs that are not predicted to be the lowest energy, but
that still contain high-quality contacts, is one way to alleviate the
impact of an imperfect energy function on the design process. The
supplemental methods of reference [23] describes the two changes
required to use this method. The changes can be made to any ver-
sion of Rosetta, and then the code must be recompiled.

3.3.3 DNA Flexibility

3.3.4 High-Temp Packer

Protein-DNA Interface Design

276

 One downfall of the necessary rotamer approximation is that favor-
able interactions can be missed. Design procedures are limited in
how large of a rotamer set can be used. One way to get around this
limit is to use motifs, libraries of interactions seen in crystal struc-
tures, to increase rotamer sampling. The protocol consists of a
search procedure using a greatly expanded rotamer set to see if one
of these native-like interactions can be made with a target base pair.
Once rotamers from the expanded set are identifi ed, they are added
to the standard rotamer set to bias the sampling for these likely
favorable interactions. An energetic bonus can also be given to
these rotamers to overcome potential inaccuracies in the energy
function. Motif-based protocols are only available in the develop-
er’s version of the code, and their usage is described in detail in the
supplemental methods of reference [23].

 1. Acquire access to the developer’s version of the code (see
Subheading 2 and Note 22).

 2. Compile the motif_dna_packer_design app. This application is
available in both trunk Rosetta and in the more experimental
branch of Rosetta that focuses on improving modeling of DNA
fl exibility.

 3. Collect a library of motifs by compiling the dna_motif_collec-
tor app, downloading all protein–DNA complexes under some
resolution cutoff (<2.8 is reasonable), and running the applica-
tion by following the instructions in reference [23] .

 4. Add the line “special_rot 1.0” to the energy function (Fig. 5).
 5. Add fl ags to the args fi le ([23], Fig. 2) to load in the motif

library, set up cutoffs for acceptance of a motif rotamer, pick a
rotamer level for the expanded motif rotamer library, and pick
the energetic bonuses to try for these added rotamers.

 6. If the trunk version of Rosetta is being used, add the line
“-patch_selectors SPECIAL_ROT” to the args fi le.

4 Notes

 1. DNA-interacting proteins can have either or both high activity
and specifi city [2]. An example of an enzyme with high activity
and low specifi city is DNA polymerase. Nonspecifi c proteins
with high activity often use DNA backbone contacts to gain
binding energy. Homing endonucleases are highly specifi c and
their levels of activity vary. High-specifi city proteins can also be
low fi delity, meaning that they can have tolerance at some of the
nucleotide positions in their target sites while maintaining an
overall high level of specifi city due to a long target site. Homing
endonucleases tend to have low fi delity in order to maintain
activity in the face of genetic drift of their target sites [5].

3.3.5 Motifs

Summer Thyme and David Baker

277

 2. Another potential cause of high specifi city is indirect readout
[37 , 38]. While direct readout is characterized by direct inter-
actions with the target site, such as hydrophobic packing and
hydrogen bonds, indirect readout is related to the DNA bend-
ing preferences of a target site sequence. There is some knowl-
edge of the rules of indirect readout, but the energetics of
indirect readout are just beginning to be incorporated into the
Rosetta models [24], and the relationship of DNA bending to
cleavage of target DNA by endonucleases is not understood.

 3. Avoiding a reduction in specifi city is an important consider-
ation when engineering these reagents. Sometimes an endo-
nuclease can maintain high levels of activity while losing
interface interactions and specifi city. Some target positions are
nonspecifi c with the native enzymes because of the evolution-
ary pressure to maintain cleavage of a target site that is subject
to genetic drift [5]. Computational redesigns at these positions
can gain interface contacts and have enhanced specifi city [19].

 4. A rotamer is a low-energy conformation of an amino acid [22].
The computational methods rely on these discrete states to make
the calculations feasible. The protocol to identify the lowest-
energy design relies on a simulated annealing algorithm [17].

 5. While there is no recognition code currently understood for
homing endonucleases, it is possible that the rules governing
specifi city will be revealed as more native endonucleases are
characterized. Collecting data on the specifi city of many
LAGLIDADG endonucleases, and analysis of their interface
interactions most likely through homology modeling, is the
only way to determine whether there is an understandable
code that can be incorporated into the modeling.

 6. David Baker (University of Washington), Philip Bradley (Fred
Hutchinson Cancer Research Center), Jens Meiler (Vanderbilt),
Jeffrey Gray (Johns Hopkins), Brian Kuhlman (UNC Chapel
Hill), Tanja Kortemme (UCSF), Jim Havranek (Washington
University of St. Louis), Richard Bonneau (NYU), Rhiju Das
(Stanford), John Karanicolas (University of Kansas), Sarel
Fleishman (Weizmann Institute of Science), Ora Furman
(Hebrew University), Ingemar André (Lund University), and
Sagar Khare (Rutgers).

 7. It is possible to do design starting from a high-quality homol-
ogy model instead of from a crystal structure. The model must
include DNA and it can carry the DNA backbone from a start-
ing template. This procedure requires that there is a homo-
logue of the protein of interest that has been crystallized bound
to DNA. Procedures to accomplish this work are not currently
published, but they will be available to the public in the near
future, and an advanced Rosetta user could accomplish such
modeling with currently available tools.

Protein-DNA Interface Design

278

 8. A basic understanding of Linux/Unix commands is essential
for running Rosetta. There are many available resources
online, and one tutorial for a beginner user is located at the
following web address: http://www.ee.surrey.ac.uk/
Teaching/Unix/ .

 9. The mode = release command builds the release version instead
of the debug version, and it is at least ten times faster than of a
debugging executable. Only leave out the “mode = release” if
you are developing code that needs to be debugged. The
“extras = static” command means that static linking of shared
libraries is done and that the code can be ported to other plat-
forms. The only downside is that the sizes of the compiled
executables are larger, but that is a worthwhile trade-off for
portability. The command “-j #” can be used to parallelize the
build into multiple threads if you are compiling on a multipro-
cessor machine (i.e., -j 20 for splitting work over 20 machines).

 10. If the user plans on running parallel multiple trajectories of the
same code, the output of these trajectories needs to go into
different directories to avoid overwriting each other. A good
strategy is to create internal directories labeled job0-job55 (or
however many runs you want to complete). The command
“mkdir job{0..55}” will generate those directories. Each paral-
lel trajectory must write to a single one of these directories.
The other option is to run jobs sequentially by using com-
mands in the arguments fi le or by using capabilities within
RosettaScripts [39]. The issue with running jobs sequentially is
that it is much less time effective if the job is long. The job can
be long if it is a complex protocol or if the pocket is multiple
base pairs because that necessitates that more interface posi-
tions are being designed simultaneously.

 11. The program GNU parallel is one (highly recommended) way
to run multiple jobs in parallel on a multiprocessor system
that does not have a job submission system in place. The web-
site explaining the program is http://www.gnu.org/soft-
ware/parallel/ . A command to use GNU parallel to submit
jobs 5 at a time and to have the results go into separate job#
directories is the following: nice -19 ./bin/parallel -j 5 'cd {.};
./bin/rosettaDNA.static.linuxgccrelease @../args>log;cd ../'
::: job* &

 12. Many tutorials for using Vi are available online (i.e., http://
www.infobound.com/vi.html).

 13. The XML fi les are a part of RosettaScripts [39]. This system
for protocol development is an integral part of the recent ver-
sions of Rosetta. It provides a fl exible environment in which
movers and operations can be recombined into different pro-
tocols without having to recompile Rosetta.

Summer Thyme and David Baker

279

 14. Change the 5th and 7th columns of the following fi ve lines in
the atom_properties.txt fi le (./rosetta_database/chemical/
atom_type_sets/fa_standard/atom_properties.txt) to the val-
ues shown here:
 Phos P 2.1500 0.5850 −4.1000 3.5000 14.7000
 Narg N 1.7500 0.2384 −10.0000 6.0000 11.2000 DONOR

ORBITALS
 NH2O N 1.7500 0.2384 −7.8000 3.5000 11.2000 DONOR

ORBITALS
 Nlys N 1.7500 0.2384 −16.0000 6.0000 11.2000 DONOR
 ONH2 O 1.5500 0.1591 −5.8500 3.5000 10.8000

ACCEPTOR SP2_HYBRID ORBITALS
 Also change the fi fth column of the three HC atoms in the
LYS.params fi le to the value 0.48 from 0.33 to increase the
positive charge of lysine. The LYS.params fi le is found here:
 “./rosetta_database/chemical/residue_type_sets/fa_stan-
dard/residue_types/l-caa/LYS.params”

 15. If running many jobs on a multiprocessor system, always sub-
mit a single test run to confi rm that all paths are correct and
that all necessary fi les are included.

 16. The number of runs that should be completed depends on how
many base pairs are being mutated in the target site. The num-
ber of base pairs controls the number of interface positions that
are designed (unless a resfi le is used, see Fig. 4). As a starting
point, a minimum of ten runs should be completed for a fi xed-
backbone standard design for a one base-pair substitution. At
least 50 runs should be completed for a single base-pair pocket
with fl exibility (either protein or DNA). A triple base-pair
pocket with backbone fl exibility needs several hundred runs
(300–500) to assess the full range of low-energy solutions.

 17. These calculations could also be used to improve the models
by comparison of results with experimental activity assays and
to predict the binding sites for proteins with unknown target
preferences.

 18. Effi ciency can be greatly increased if a script is written to pull
these numbers out of each designed pdb fi le.

 19. It is recommended that either the mean or median value of the
total_energy for all structures be used for specifi city prediction,
rather than the score of the lowest-energy structure. The mean
or median is a more accurate predictor because the protocol
can generate outlier structures with energies much lower than
the majority and these outliers are as likely to represent the
actual energetic and structural state of the complex. This rec-
ommendation is especially true for protocols involving any
amount of backbone fl exibility.

Protein-DNA Interface Design

280

 20. The calculation of specifi city is based on the Boltzmann distri-
bution. The value of k B T can be changed, but a value of 1 is
reasonable. The equation for calculating specifi city for a gua-
nine base pair is (2.718^0)/(2.718^0 + 2.178^(−Δ E G-A) +
2.178^(−Δ E G-C) + 2.178^(−Δ E G- T)).

 21. Only the DesignProteinBackboneAroundDNA mover will
limit protein backbone movement to around the target base
pair. Other methods of protein backbone movement will
require another way of designating the regions that should be
fl exible.

 22. Contact Summer Thyme at sthyme@gmail.com or Philip
Bradley at pbradley@fhcrc.org for information on the most
updated branch of the developer’s code needed to use DNA
fl exibility.

 Acknowledgements

 The authors would like to thank Justin Ashworth, Phil Bradley,
and Jim Havranek for their vast contributions to improving pro-
tein–DNA interface design, as well as the entire RosettaCommons
community for contributions to the Rosetta code base. This work
was supported by the US National Institutes of Health
(#GM084433 and #RL1CA133832 to DB), the Foundation for
the National Institutes of Health through the Gates Foundation
Grand Challenges in Global Health Initiative, and the Howard
Hughes Medical Institute.

 References

 1. Jin X, West SM, Joshi R, Honig B, Mann RS
(2010) Origins of specifi city in protein–DNA
recognition. Annu Rev Biochem 79:233–269

 2. Ashworth J, Baker D (2009) Assessment of
optimization of affi nity and specifi city at pro-
tein–DNA interfaces. Nucleic Acids Res 37:e73

 3. Morozov AV, Havranek JJ, Baker D, Siggia ED
(2005) Protein–DNA binding specifi city pre-
dictions with structural models. Nucleic Acids
Res 33:5781–5798

 4. Stoddard BL (2005) Homing endonuclease
structure and function. Q Rev Biophys 38:
39–95

 5. Stoddard BL (2011) Homing endonucleases:
from microbial genetic invaders to reagents for
targeted DNA modifi cation. Structure 19:7–15

 6. Gao H et al (2010) Heritable targeted muta-
genesis in maize using a designed endonucle-
ase. Plant J 61:176–187

 7. Windbichler N et al (2011) A synthetic homing
endonuclease-based gene drive system in the
human malaria mosquito. Nature 473:212–215

 8. Marcaida MJ, Munoz IG, Blanco FJ, Prieto J,
Montoya G (2009) Homing endonucleases:
from basis to therapeutic applications. Cell Mol
Life Sci 67:727–748

 9. Perez EE et al (2008) Establishment of HIV-1
resistance in CD4+ T cells by genome editing
using zinc-fi nger nucleases. Nat Biotechnol 26:
808–816

 10. Takeuchi R, Certo M, Caprara MG, Scharenberg
AM, Stoddard BL (2008) Optimization of in
vivo activity of a bifunctional homing endonu-
clease and maturase reverses evolutionary deg-
radation. Nucleic Acids Res 37:877–890

 11. Chames P, Epinat JC, Guillier S, Patin A,
Lacroix E, Pâques F (2005) In vivo selection of
engineered homing endonucleases using

Summer Thyme and David Baker

281

double- strand break induced homologous
recombination. Nucleic Acids Res 33:e178

 12. Doyon JB, Pattanayak V, Meyer CB, Liu DR
(2006) Directed evolution and substrate speci-
fi city profi ling of homing endonuclease I-SceI.
J Am Chem Soc 128:2477–2484

 13. Jarjour J et al (2009) High-resolution profi ling
of homing endonuclease binding and catalytic
specifi city using yeast surface display. Nucleic
Acids Res 37:6871–6880

 14. Voigt CA, Mayo SL, Arnold FH, Wang Z
(2001) Computational method to reduce the
search space for directed protein evolution.
Proc Natl Acad Sci U S A 98:3778–3783

 15. Chen MM, Snow CD, Vizcarra CL, Mayo SL,
Arnold FH (2012) Comparison of random
mutagenesis and semi-rational designed librar-
ies for improved cytochrome P450 BM3-
catalyzed hydroxylation of small alkanes.
Protein Eng Des Sel 25:171–178

 16. Khersonsky O, Röthlisberger D, Wollacott
AM, Murphy P, Dym O, Albeck S, Kiss G,
Houk KN, Baker D, Tawfi k DS (2011)
Optimization of the in-silico-designed kemp
eliminase KE70 by computational design and
directed evolution. J Mol Biol 407:391–412

 17. Leaver-Fay A et al (2011) Rosetta3: an object-
oriented software suite for simulation and
design of macromolecules. Methods Enzymol
487:545–574

 18. Ashworth J, Havranek JJ, Duarte CM, Sussman
D, Monnat RJ Jr, Stoddard BL, Baker D
(2006) Computational redesign of endonucle-
ase DNA binding and cleavage specifi city.
Nature 441:656–659

 19. Thyme SB, Jarjour J, Takeuchi R, Havranek JJ,
Ashworth J, Scharenberg AM, Stoddard BL,
Baker D (2009) Exploitation of binding energy
for catalysis and design. Nature 461:1300–1304

 20. Ulge UY, Baker DA, Monnat RJ Jr (2011)
Comprehensive computational design of
mCreI homing endonuclease cleavage specifi c-
ity for genome engineering. Nucleic Acids Res
39:4330–4339

 21. Ashworth J, Taylor GK, Havranek JJ, Quadri
SA, Stoddard BL, Baker D (2010)
Computational reprogramming of homing
endonuclease specifi city at multiple adjacent
base pairs. Nucleic Acids Res 38:5601–5608

 22. Dunbrack RL Jr, Cohen FE (1997) Bayesian
statistical analysis of protein side-chain rotamer
preferences. Protein Sci 6:1661–1681

 23. Thyme SB, Baker D, Bradley P (2012)
Improved modeling of side-chain–base interac-
tions and plasticity in protein–DNA interface
design. J Mol Biol 419:255–274

 24. Yanover C, Bradley P (2011) Extensive protein
and DNA backbone sampling improves
structure- based specifi city prediction for C2H2
zinc fi ngers. Nucleic Acids Res 39:4564–4576

 25. Havranek JJ, Baker D (2009) Motif-directed
fl exible backbone design of functional interac-
tions. Protein Sci 18:1293–1305

 26. Li H, Ulge UY, Hovde BT, Doyle LA, Monnat
RJ Jr (2011) Comprehensive homing endonu-
clease target site specifi city profi ling reveals
evolutionary constraints and enables genome
engineering applications. Nucleic Acids Res
40:2587–2598

 27. Redondo P et al (2008) Molecular basis of
xeroderma pigmentosum group C DNA recog-
nition by engineered meganucleases. Nature
456:107–111

 28. Takeuchi R, Lambert AR, Mak AN, Jacoby K,
Dickson RJ, Gloor GB, Scharenberg AM,
Edgell DR, Stoddard BL (2011) Tapping natu-
ral reservoirs of homing endonucleases for tar-
geted gene modifi cation. Proc Natl Acad Sci U
S A 108:13077–13082

 29. Grizot S, Duclert A, Thomas S, Duchateau P,
Pâques F (2011) Context dependence between
subdomains in the DNA binding interface of
the I-CreI homing endonuclease. Nucleic
Acids Res 39:6124–6136

 30. Pabo CO, Nekludova L (2000) Geometric
analysis and comparison of protein–DNA inter-
faces: why is there no simple code for recogni-
tion? J Mol Biol 301:597–624

 31. Miller JC et al (2011) A TALE nuclease archi-
tecture for effi cient genome editing. Nat
Biotechnol 29:143–148

 32. Fleishman SJ et al (2011) Computational
design of proteins targeting the conserved stem
region of infl uenza hemagglutinin. Science
332:816–821

 33. Röthlisberger D et al (2008) Kemp elimination
catalysts by computational enzyme design.
Nature 453:190–195

 34. Azoitei ML et al (2011) Computation-guided
backbone grafting of a discontinuous motif
onto a protein scaffold. Science 334:373–376

 35. Szeto MD, Boissel SJS, Baker D, Thyme SB
(2011) Mining endonuclease cleavage determi-
nants in genomic sequence data. J Biol Chem
286:32617–32627

 36. Baxter S, Lambert AR, Kuhar R, Jarjour J,
Kulshina N, Parmeggiani F, Danaher P,
Gano J, Baker D, Stoddard BL, Scharenberg
AM (2012) Engineering domain fusion chi-
meras from I-OnuI family LAGLIDADG
homing endonucleases. Nucleic Acids Res
40:7985–8000

Protein-DNA Interface Design

282

 37. Steffen NR, Murphy SD, Tolleri L, Hatfi eld
GW, Lathrop RH (2002) DNA sequence and
structure: direct and indirect recognition in
protein–DNA binding. Bioinformatics 18:
S22–S30

 38. Becker NB, Wolff L, Everaers R (2006) Indirect
readout: detection of optimized sequences and
calculation of relative binding affi nities using
different DNA elastic potentials. Nucleic Acids
Res 34:5638–5649

 39. Fleishman SJ et al (2011) RosettaScripts: a
scripting language interface to the Rosetta mac-
romolecular modeling suite. PLoS One 6:e20161

 40. Canutescu AA, Dunbrack RL (2003) Cyclic
coordinate descent: a robotics algorithm for
protein loop closure. Protein Sci 12:
963–972

 41. Wang C, Bradley P, Baker D (2007) Protein–
protein docking with backbone fl exibility.
J Mol Biol 373:503–519

 42. Havranek JJ, Harbury PB (2003) Automated
design of specifi city in molecular recognition.
Nature Struct Biol 10:45–52

 43. Mitchell M (1996) An introduction to genetic
algorithms, MIT Press

Summer Thyme and David Baker

	Preface
	Contents
	Contributors
	Chapter 1: Homing Endonucleases: From Genetic Anomalies to Programmable Genomic Clippers
	1 History and Evolution
	1.1 Discovery of the First Homing Endonuclease
	1.2 Evolutionary Considerations
	1.3 HEs from Then Till Now

	2 General Properties of HEs
	3 HE Families
	3.1 LAGLIDADG Endonucleases
	3.2 GIY-YIG Endonucleases
	3.3 HNH Endonucleases
	3.4 His-Cys Box Endonucleases
	3.5 PD-(D/E)xK and EDxHD Endonucleases

	4 Modular Semisynthetic DNA Cleavage Enzymes
	5 Reprogramming HEs
	5.1 Birth of an Industry: Selection Systems
	5.2 HEs with Altered Specificity
	5.3 Nicking Endonucleases
	5.4 Hybrid Endonucleases

	6 Applications of HEs
	6.1 HEs as Therapeutic Agents
	6.2 HEs in Insect Vector Control
	6.3 HEs in Agriculture

	7 Comparison of Protein Targeting Technologies for Genome Engineering
	8 RNA as a Player in Targeted Genome Editing
	9 Summary
	References

	Chapter 2: Bioinformatic Identification of Homing Endonucleases and Their Target Sites
	1 Introduction
	2 Materials
	3 Methods
	3.1 Using the HomeBase Web Server to Search the Existing HomeBase Collection of Putative HEGs
	3.2 Searching for Novel HEGs in a Sequence Database Using a Local Implementation of the HomeBase Pipeline
	3.2.1 Search for HEGs (BLAST-1)
	3.2.2 Defining Target Sites Based on Vacant Homologs (BLAST-2)
	3.2.3 Quality Assurance and Control
	3.2.4 Searching for Possible Target Sites in a Genome of Interest

	4 Notes
	References

	Chapter 3: PCR-Based Bioprospecting for Homing Endonucleases in Fungal Mitochondrial rRNA Genes
	1 Introduction
	2 Materials
	2.1 DNA Extraction and mtDNA rDNA Gene Amplification
	2.2 Protein Overexpression and Purification

	3 Methods
	3.1 Fungal Growth and DNA Extraction
	3.2 PCR Primer Design
	3.3 PCR Amplification (rns Gene)
	3.4 Gel Electrophoresis
	3.5 PCR Product Purification
	3.6 DNA Sequencing
	3.7 Sequence Analysis and Comparative Sequence Analysis and Data Mining for HEs
	3.8 HE Protein Overexpression in E. coli
	3.9 Testing for Endonuclease Activity: Cloning Strategies
	3.10 Codon Optimization and Gene Synthesis
	3.11 Designing PCR Primers for pET TOPO Subcloning of HE ORFs
	3.12 Producing Blunt-End PCR Products
	3.13 Performing TOPO Ligation/Cloning Reaction
	3.14 Chemical Transformation Protocol
	3.15 Analyzing Positive Clones
	3.16 Preparing the Cells (Transformants) for Long-Term Storage
	3.17 Sequencing the Plasmid Construct
	3.18 Overexpression of the Fungal Protein in E. coli
	3.19 Transforming BL21 Star (DE3) Cells
	3.20 Small-Scale Expression of the Protein
	3.21 Large-Scale Overexpression of the Protein
	3.22 Purification of the Protein
	3.23 Biochemical Characterization: In Vitro Endonuclease Cleavage Assay
	3.24 Cleavage Site Mapping

	4 Notes
	References

	Chapter 4: Mapping Homing Endonuclease Cleavage Sites Using In Vitro Generated Protein
	1 Introduction
	2 Materials
	2.1 Kinasing Reagents
	2.2 Polymerase Chain Reaction Reagents
	2.3 Sequencing Reagents
	2.4 In Vitro Transcription/Translation Reagents
	2.5 Endonuclease Assay Reagents
	2.6 Denaturing Polyacrylamide Gel Electrophoresis (PAGE) Reagents
	2.7 Molecular Biology
	2.8 Equipment

	3 Methods
	3.1 Generation of Singly 5 ′-End Labeled Target DNA Substrate
	3.2 Generation of DNA Sequencing Ladder
	3.3 Amplification of HEG for In Vitro Expression
	3.4 Generation of In Vitro- Synthesized Homing Endonuclease
	3.5 Endonucleolytic Cleavage Assay (EC Assay)
	3.6 Phenol Extraction
	3.7 Denaturing Polyacrylamide Gel
	3.8 Electrophoresis

	4 Notes
	References

	Chapter 5: Mapping Free-Standing Homing Endonuclease Promoters Using 5′RLM-RACE
	1 Introduction
	2 Materials
	2.1 Dephosphoryla tion Reaction
	2.2 RNA Adaptor Ligation Reaction
	2.3 Reverse Transcription Reaction
	2.4 PCR1: Outer PCR
	2.5 PCR2: Nested PCR
	2.6 Gel Purification
	2.7 Cloning and Sequencing

	3 Methods
	3.1 Removing Triphosphates from Unprocessed Transcripts Using TAP
	3.2 Ligating Adaptor RNAs to Decapped Substrates
	3.3 Converting Adaptor-Ligated RNA to cDNA
	3.4 Converting cDNA to dsDNA (PCR1)
	3.5 Nested PCR (PCR2)
	3.6 Gel Purification
	3.7 Cloning and Sequencing

	4 Notes
	References

	Chapter 6: PCR Analysis of Chloroplast Double-Strand Break (DSB) Repair Products Induced by I-CreII in Chlamydomonas and Arabidopsis
	1 Introduction
	2 Materials
	2.1 Materials for the Nucleic Acid Isolations
	2.2 Materials for PCR and Product Analysis

	3 Methods
	3.1 Isolation of Total Nucleic Acids (TNA) from Chlamydomonas
	3.2 Isolation of TNA from Arabidopsis for PCR
	3.3 PCR and Analysis of the Products

	4 Notes
	References

	Chapter 7: A Two-Plasmid Bacterial Selection System for Characterization and Engineering of Homing Endonucleases
	1 Introduction
	2 Materials
	2.1 Preparation of Electrocompetent E. coli BW25141
	2.2 Construction of Reporter Plasmid p11-LacY-wt1 and Preparation of Electrocompetent E. coli BW25141 Harboring p11-LacY-wt1
	2.3 Construction of Expression Plasmid pTrc-ISceI
	2.4 In Vivo Activity Assay

	3 Methods
	3.1 Preparation of Electrocompetent E. coli BW25141
	3.2 Construction of Reporter Plasmid p11-LacY-wt1 and Preparation of Electrocompetent E. coli BW25141 Harboring p11-LacY-wt1
	3.3 Construction of Expression Plasmid pTrc-I-SceI
	3.4 In Vivo Activity Assay

	4 Notes
	References

	Chapter 8: Rapid Screening of Endonuclease Target Site Preference Using a Modified Bacterial Two-Plasmid Selection
	1 Introduction
	2 Materials
	2.1 Plasmids and E. coli Strains
	2.2 CaCl 2 Competent BW25141(λDE3)
	2.3 Library Construction
	2.4 Target Site Two-Plasmid Screen

	3 Methods
	3.1 Making CaCl 2 Competent BW25141(λDE3) Cells Containing pEndo
	3.2 Construction of pTox Target Site Library (pToxLib)
	3.3 Target Site Two-Plasmid Screen

	4 Notes
	References

	Chapter 9: A Yeast-Based Recombination Assay for Homing Endonuclease Activity
	1 Introduction
	2 Materials
	2.1 Yeast and Bacteria Culture Media
	2.2 Yeast Transformation Media
	2.3 DNA Extractions Buffers
	2.4 Robotic Equipment

	3 Methods
	3.1 Plasmids Constructs
	3.2 Transformations
	3.3 In Vivo Cloning in Yeast
	3.4 Picking and Rearraying
	3.5 Gridding and Mating
	3.6 Selection of Diploids
	3.7 Induction of Meganuclease Expression
	3.8 Colorimetric Readout
	3.9 Workflow
	3.10 Quality Controls
	3.11 Screening Formats
	3.12 Yeast Plasmid DNA Extraction

	4 Notes
	References

	Chapter 10: Rapid Determination of Homing Endonuclease DNA Binding Specificity Profile
	1 Introduction
	2 Materials
	3 Methods
	3.1 Preparation of DNA Duplexes
	3.2 Immobilization of the Homing Endonuclease
	3.3 Binding
	3.4 Fluorescence Reading
	3.5 Data Analysis
	3.6 Remarks About This Method and Data

	4 Notes
	References

	Chapter 11: Quantifying the Information Content of Homing Endonuclease Target Sites by Single Base Pair Profiling
	1 Introduction
	1.1 Position-Specific Scoring Matrices
	1.2 Definition of Information
	1.3 Information Content of a HE DNA Target Site

	2 Materials
	2.1 Cloning HE Target Sites into Plasmid DNA
	2.2 In Vitro “Barcode” Cleavage Assay
	2.3 In Vivo Cleavage Assay in Human Cells

	3 Methods
	3.1 Cloning HE Target Sites into Plasmid DNA
	3.2 In Vitro “Barcode” Cleavage Profiling of HE Target Sites
	3.3 In Vivo Cleavage Profiling of HE Target Sites
	3.4 Data Analysis and Visualization

	4 Notes
	References

	Chapter 12: Homing Endonuclease Target Site Specificity Defined by Sequential Enrichment and Next-Generation Sequencing of Highly Complex Target Site Libraries
	1 Introduction
	2 Materials
	2.1 Generation of Partially Degenerate Target Site Library
	2.2 Sequential Enrichment of Cleavage-Sensitive Target Sites
	2.3 Sample Preparation for Illumina Sequencing

	3 Methods
	3.1 Generation of Partially Degenerate Target Site Library
	3.2 Sequential Enrichment of HE Cleavage-Sensitive Target Sites
	3.3 Sample Preparation for NGS/Illumina Sequencing
	3.4 Data Analysis of Illumina Sequencing Results (see Note 8)

	4 Notes
	References

	Chapter 13: Homing Endonuclease Target Determination Using SELEX Adapted for Yeast Surface Display
	1 Introduction
	2 Materials
	2.1 Randomized Pool (SELEX0) Generation from ssDNA Template
	2.2 Polyacrylamide Gel
	2.3 Yeast Transformation
	2.4 Yeast Growth and Induction
	2.5 Binding Selection
	2.6 Binding Selection Condition Optimization or SELEX Analysis by Flow Cytometry
	2.7 SELEX Protocol
	2.8 Labeled Double-Stranded DNA Pools for SELEX Analysis by Flow Cytometry

	2.9 Sequencing and Analysis

	3 Methods
	3.1 Randomized Pool (SELEX0) Generation from ssDNA Template
	3.2 Yeast Transformation
	3.3 Yeast Growth and Induction
	3.4 Binding Selection Condition Optimization
	3.5 SELEX Protocol
	3.6 SELEX Analysis by Flow Cytometry
	3.7 Sequencing and Analysis

	4 Notes
	References

	Chapter 14: Engineering and Flow-Cytometric Analysis of Chimeric LAGLIDADG Homing Endonucleases from Homologous I-OnuI-Family Enzymes
	1 Introduction
	2 Materials
	2.1 Assembly PCR
	2.2 Cloning of DNA Constructs
	2.3 Dual-Labeled Double-Stranded DNA Substrates
	2.4 Polyacrylamide Gel
	2.5 Yeast Transformation
	2.6 Yeast Growth and Induction
	2.7 Yeast Surface Display Flow-Cytometric DNA Binding and Cleavage Assays

	2.8 Non-tethered In Vitro Cleavage Assay and Gel

	3 Methods
	3.1 Analysis and Preparation of Parent Homing Endonuclease DNA Coding Sequences
	3.2 Assembly PCR
	3.3 Preparation of Open pETCON Vector DNA
	3.4 Preparation of N- and C-Terminal Domain DNA for Ligation
	3.5 Ligation of N- and C-Terminal Domains into the pETCON Yeast Surface Expression Vector
	3.6 Transformation and Screening of Chimeric Homing Endonuclease Constructs
	3.7 Preparation of Dual-Labeled Double-Stranded DNA Substrates
	3.8 Yeast Transformation
	3.9 Growth and Induction of Yeast
	3.10 Yeast Surface Display Flow-Cytometric DNA Cleavage Assay

	3.11 Yeast Surface Display Flow-Cytometric DNA Binding Assay

	3.12 Non-tethered in Vitro Cleavage Assay and Gel
	3.13 Optimization of Partially Active Chimeras

	4 Notes
	References

	Chapter 15: Bioinformatics Identification of Coevolving Residues
	1 Introduction
	2 Materials
	2.1 Computer and General-Purpose Software
	2.2 Sequence Collection Tools and Databases
	2.3 Sequence Alignment Tools
	2.4 Alignment Curation Tools
	2.5 Coevolution Analysis

	3 Methods
	3.1 Building and Installing Bioinformatics Tools
	3.2 Collecting Protein Sequences and Structures
	3.3 Building a Structure-Guided Sequence Alignment (Alternately, Use Subheading 3.4 for a Sequence-­Only Alignment if No Structure Is Available)
	3.4 Creating a Sequence-Only Alignment (Alternately, Use Subheading 3.3 for a Structure-­Guided Alignment)
	3.5 Curating and Validating an Alignment
	3.6 Coevolution Analysis
	3.7 Visualizing and Interpreting Results

	4 Notes
	References

	Chapter 16: Identification and Analysis of Genomic Homing Endonuclease Target Sites
	1 Introduction
	2 Materials
	3 Methods
	3.1 LAHEDES Server HE Target Site Searches
	3.2 BLAST Server Genomic HE Target Site Searches
	3.3 Sequence Verification of Genomic HE Target Sites
	3.4 In Vitro Cleavage Analysis of Genomic HE Target Sites
	3.5 Southern Blot Analysis of In Vivo Target Site Cleavage
	3.6 Analysis of In Vivo Target Site Cleavage by Site Amplification and Cleavage
	3.6.1 Co-expression of HEs and TREX2 in Human Cells
	3.6.2 CEL I/Surveyor Cleavage of Target Site PCR Products

	3.7 Analysis of In Vivo Target Site Cleavage by Site Sequencing
	3.8 Worked Example: Identification of Potential Human Genomic “Safe Harbor” Sites Cleaved by the LAGLIDADG HE I-CreI/mCreI

	4 Notes
	References

	Chapter 17: Redesigning the Specificity of Protein–DNA Interactions with Rosetta
	1 Introduction
	2 Materials
	3 Methods
	3.1 Standard Protein–DNA Interface Design
	3.2 Assessment of Designs Using Specificity and Binding Energy Calculations
	3.2.1 Automatic Specificity and Binding Energy Prediction Following Fixed-Backbone Design
	3.2.2 Protocol for Specificity Calculation That Is Suitable Following Any Design Procedure

	3.3 Advanced Design Modes
	3.3.1 Protein Flexibility
	3.3.2 Multistate Design
	3.3.3 DNA Flexibility
	3.3.4 High-Temp Packer
	3.3.5 Motifs

	4 Notes
	References

	Index

