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    Chapter 17   

 Redesigning the Specifi city of Protein–DNA Interactions 
with Rosetta 

           Summer     Thyme      and     David     Baker   

    Abstract 

   Building protein tools that can selectively bind or cleave specifi c DNA sequences requires effi cient technologies 
for modifying protein–DNA interactions. Computational design is one method for accomplishing this goal. 
In this chapter, we present the current state of protein–DNA interface design with the Rosetta macromo-
lecular modeling program. The LAGLIDADG endonuclease family of DNA-cleaving enzymes, under 
study as potential gene therapy reagents, has been the main testing ground for these in silico protocols. 
At this time, the computational methods are most useful for designing endonuclease variants that can 
accommodate small numbers of target site substitutions. Attempts to engineer for more extensive interface 
changes will likely benefi t from an approach that uses the computational design results in conjunction with 
a high-throughput directed evolution or screening procedure. The family of enzymes presents an engi-
neering challenge because their interfaces are highly integrated and there is signifi cant coordination 
between the binding and catalysis events. Future developments in the computational algorithms depend 
on experimental feedback to improve understanding and modeling of these complex enzymatic features. 
This chapter presents both the basic method of design that has been successfully used to modulate specifi city 
and more advanced procedures that incorporate DNA fl exibility and other properties that are likely neces-
sary for reliable modeling of more extensive target site changes.  

  Key words     Protein–DNA interactions  ,   Computational design  ,   Rosetta  ,   Specifi city  ,   In silico prediction  , 
  Gene targeting  ,   Direct readout  

1      Introduction 

 Direct interactions between amino acids and DNA nucleotides are 
an important determinant of the substrate preference of a DNA- 
binding protein. A position in a binding site where the protein 
displays a preference for one nucleotide over the others is consid-
ered to have high specifi city [ 1 – 3 ]. These positions are often char-
acterized by strong direct interactions that are disrupted when the 
favored base is replaced (Fig.  1 ,  see   Notes 1  and  2 ). Being able to 
redesign interface residues to alter this specifi city would enable the 
targeting of a DNA-binding protein to a site of interest ( see   Note 3 ). 
This technology is particularly useful for targeting genome-specifi c 
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DNA cleavage enzymes, such as LAGLIDADG endonucleases [ 4 ,  5 ], 
to sites that are relevant to genome engineering and gene therapy 
applications [ 6 – 9 ].

   Computational methods for engineering specifi city offer an 
effi cient alternative to more labor-intensive experimental procedures, 
such as directed evolution [ 10 – 13 ]. Additionally, experimental and 
in silico approaches are not mutually exclusive, as the predicted 
results can also be used to guide the design of libraries for screening 
and enhance the likelihood of successfully identifying an active 
variant [ 14 – 16 ]. The Rosetta program for macromolecular modeling 
and design [ 17 ] has been successfully used to alter the specifi city of 
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  Fig. 1    The predicted role of direct interactions in protein–DNA specifi city. Each panel represents the structure with 
the mean energy from a set of 56 repacks done with Rosetta. The wild-type base pair is the G:C at position −6 or 
409 (crystal structure numbering) in the 2QOJ pdb. The native 2QOJ structure is shown in  gray , with native hydro-
gen bonds shown in  yellow , and the Rosetta structures are shown in  white , with predicted hydrogen bonds shown 
in  red . The wild-type base pair has a very high predicted specifi city when compared to the three alternative base 
pairs. ( a ) The repacked structure for the wild-type base pair maintains the energetically favorable direct hydrogen 
bonds that are in the crystal structure. ( b ) The A:T base pair loses hydrogen bonding, and the methyl group of the 
thymine nucleotide has signifi cant repulsion (highlighted by  spheres ) with a neighboring threonine side chain. 
( c ) The C:G base pair loses hydrogen bonding. ( d ) The T:A base pair loses hydrogen bonding       
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several LAGLIDADG homing endonucleases [ 18 – 21 ]. Describing 
the protocols used to computationally redesign endonuclease spec-
ifi city with Rosetta is the focus of this chapter. 

 The main design algorithm in Rosetta searches protein sequence 
and rotameric [ 22 ] space to fi nd a set of amino acids that is compat-
ible with the DNA sequence being targeted ( see   Note 4 ). Each 
attempted amino acid combination is evaluated with a physically 
based energy function in order to identify the lowest-energy 
sequence [ 17 ,  23 ]. The majority of the previous endonuclease rede-
sign successes [ 18 – 21 ] utilized a standard fi xed-backbone algo-
rithm, in which both the protein and DNA backbones in the starting 
crystal structure are not fl exible. This chapter details this basic 
method and additionally introduces some alternative DNA inter-
face design protocols. These advanced methods include fl exibility 
on one or both sides of the protein–DNA interface [ 21 ,  24 ], explicit 
design for specifi city using a genetic algorithm [ 19 ,  21 ], and the use 
of libraries of native-like interactions (called motifs) to guide rota-
mer sampling [ 23 ,  25 ]. These approaches provide ways to diversify 
design results over the fi xed-backbone approximation available in 
release versions of Rosetta. 

 Computational design is an effi cient approach for altering 
specifi city, as long as the particular problem of interest is feasible 
with the currently available technology. The majority of the previ-
ously published successes were limited to single base-pair switches 
in the twenty base-pair target sequence characteristic of 
LAGLIDADG endonucleases [ 18 – 20 ]. The exception that stands 
out was design for a triple base pair. However, the crystal structure 
of this variant revealed extensive DNA movement and interface 
coordination that were not predicted by the standard Rosetta 
modeling [ 21 ]. Directed evolution methods have produced several 
large-scale specifi city shifts, but achieving consistent success and 
maintaining the exquisite specifi city characteristic of the natural 
endonucleases [ 19 ,  26 ] are still a challenge for every approach 
[ 27 – 29 ]. A structure obtained for one of these evolved enzymes 
also showed extensive interface rearrangements that are not con-
sidered in standard computational design protocols [ 27 ]. All of 
these results indicate that there are features of the LAGLIDAG 
interface that are not being accurately captured by the models. 

 LAGLIDADG endonucleases have highly integrated inter-
faces, in which binding and catalysis are coordinated [ 19 ]. While 
this characteristic is advantageous for a gene-targeting reagent, it 
signifi cantly increases the challenge of specifi city modulation 
because there is no currently understood recognition code ([ 30 , 
 31 ],  see   Note 5 ). This lack of a recognition code makes computa-
tion even more necessary, albeit harder, because multiple base-pair 
specifi city switches need to be engineered as one unit, instead of 
being engineered separately and then recombined. Directed evolu-
tion approaches are limited in how many amino acids can be 
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simultaneously randomized. One way to utilize the power of 
computational design is to identify variants with low levels of a 
desired feature and then use these proteins as starting points for 
directed evolution optimization [ 32 – 34 ]. Another use of compu-
tation is that it can suggest the inclusion of only certain amino acid 
types at each position in a protein library allows for many more 
positions to be concurrently explored. For example, the core posi-
tions that buttress the DNA-interacting residues and can be impor-
tant for activity [ 35 ] are often excluded from libraries [ 11 ,  29 ] in 
favor of focusing on the interface residues that make direct con-
tacts. A concerted approach is important because it is likely that a 
stringent alignment of the N- and C-terminal domains is required 
to facilitate catalysis and it is mediated by residues not in the pro-
tein–DNA interface [ 27 ,  28 ,  36 ]. There has been effectively no 
success at altering the specifi city of the central four base pairs where 
catalysis occurs, presumably due to these alignment criteria and 
indirect readout of the DNA [ 37 ,  38 ], neither of which is modeled 
or well understood. Engineering pipelines that iterate between 
computational design, directed evolution, and detailed kinetic 
analyses are poised to discover the missing components of these 
computational models.  

2       Materials 

     1.    The latest release version of the Rosetta software suite (Rosetta 
3.4 as of 2012) is available from   http://www.rosettacom-
mons.org     and is free of charge for academics and nonprofi t 
users. A comprehensive manual for the software is also avail-
able from the same website. For conducting protocols that are 
not included in the release version, the developer’s version of 
the code must be obtained. Protocols that require these 
extended capabilities are noted throughout this chapter. 
A sponsor from a Rosetta lab is required for access to this 
repository, and a partial list of labs with members that can pro-
vide sponsorship or collaboration is included in  Note 6 .   

   2.    Compiling the Rosetta code requires either an external com-
piling software or Python (version >= 2.2) to run the included 
scons.py script that runs a local version of the compiling soft-
ware SCons that comes packaged with Rosetta.   

   3.    The Rosetta software runs on multiple platforms (see manual 
for list). However, it is suggested that a Unix or Linux cluster 
be used in order to submit many runs in parallel and enhance 
calculation effi ciency.   

   4.    A high-resolution crystal structure (preferably <3.0 Å) of the 
protein of interest bound to DNA ( see   Note 7 ).      
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3    Methods 

          1.    Obtain a current copy of the release version of Rosetta ( see  
Subheading  2 ).   

   2.    Open a terminal window ( see   Note 8 ).   
   3.    Enter the Rosetta source directory that contains the scons.py 

fi le. Type “scons bin mode=release extras=static” to compile a 
production speed version of the code that can be ported to 
different platforms and computer systems ( see   Note 9 ).   

   4.    If the code is going to be run on a different computer system 
than it was compiled, the rosettaDNA executable must be 
moved to that system by typing “scp ./bin/rosettaDNA.static.
linuxgccrelease computerwhereitwillberun.” The entire 
rosetta_database folder must also be moved by typing “scp -r ../
rosetta_database/ computerwhereitwillberun.”   

   5.    Make a directory where the code will be run and the output 
collected by entering the desired location and typing “mkdir 
nameofdirectory” ( see   Notes 10  and  11 ).   

   6.    Make a fi le that contains the arguments read by the Rosetta 
program with your favorite text editor (Fig.  2 ). The editor Vi 
is likely present in your Linux/Unix system. To use Vi to make 
the arguments fi le, type “vi nameofargsfi le,” enter insertion 
mode by typing “i,” and then type the desired fl ags using 
Fig.  2  as a guide ( see   Note 12 ).

       7.    Make an XML script fi le ( see   Note 13 ) that contains protocol 
instructions given to the program through RosettaScripts [ 17 , 
 39 ]. This fi le can be made by using Fig.  3  as a guide for the 
content and following the same Vi instructions described in 
 step 6  (all other fi les in future steps can also be made or modi-
fi ed with Vi).

       8.    The protein interface positions to be designed will be automati-
cally calculated based on the “dna_defs” and “z_cutoff” fl ags 
that are part of the operations (TASKOPERATIONS) included 
in the XML fi le (Fig.  3 ). However, a type of fi le known as a 
resfi le (Fig.  4 ) is available if the user would instead prefer to 
allow only a subset of amino acid types and designable posi-
tions. The addition of the line “-resfi le nameoffi le” to the args 
fi le (Fig.  2 ) will enable the resfi le to override automatic detec-
tion of the interface residues. The XML script should also be 
modifi ed to add the task operation “<ReadResfi le name=RRF/>” 
and replace the use of AUTOprot with RRF in the mover. The 
“dna_def” option is also no longer necessary in the DnaInt 
operation because the target base is specifi ed in the resfi le.

       9.    Choose an energy function that is optimized for protein–DNA 
interactions [ 21 – 24 ] and make a fi le containing the necessary 

3.1  Standard 
Protein–DNA Interface 
Design
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weights for each energy function component (Fig.  5 ). The name 
of the energy function is the input for the fl ag “-score::weights 
nameoffi le” (Fig.  2 ).

       10.    Modify the Rosetta database to go with the optimized energy 
function shown in Fig.  5 . The necessary changes are listed in 
 Note 14  [ 23 ].   

   11.    Run code by submitting to whatever computer cluster you are 
using or by typing “rosettaDNA.static.linuxgccrelease @
nameofargsfi le” ( see   Notes 15  and  16 ).      

  Follow instructions in Subheading  3.1  with the following described 
variations to the XML script (Fig.  3 ) and arguments fi les (Fig.  2 ). 
The specifi city and binding energy calculations enable the user to 
identify the designs with the most desirable properties ( see   Note 17 ). 

3.2  Assessment 
of Designs Using 
Specifi city and 
Binding Energy 
Calculations

-in:ignore_unrecognized_res # ignore anything in the pdb structure that is
not recognizable
-file:s 2QOJ.pdb # input structure
-mute all # no output into an output file, skip this flag off when debugging
and include for large-scale runs
-unmute protocols.dna # unmute a subset of the output if desired
-score::weights rosetta_database/scoring/weights/optimizedenergyfxn.wts
# energy function for evaluating structures (see Fig. 5)
-score:output_residue_energies # include information in the pdb about the
interaction energies of residues in the design
-run:output_hbond_info # include information in the pdb about the
hydrogen bonding of residues in the design
-database rosetta_database # required Rosetta database, see Note 17 for
useful changes to the database
-ex1 # extra rotamer sampling around chi angle 1
-ex2 # extra rotamer sampling around chi angle 2 
-ex1aro::level 6 # even more extra rotamer sampling for aromatic residues 

can have large repulsion scores if the rotamer is not in the optimal position.
-ex2aro::level 6 # even more extra rotamer sampling for aromatic residues
around chi angle 2
-exdna::level 4 # use DNA rotamers and include extra sampling (inclusion

-jd2:dd_parser # use the parser protocols
-parser:protocol XML.scriptfile # XML script (see Fig. 3)
-overwrite # if a pdb with the same name already exists in the directory
where the design occurring, then overwrite the old pdb
-out:prefix design_  # an optional prefix to add to the name of designs

of this flag is highly advised for protein-DNA design)

around chi angle 1. This flag is recommended because aromatic residues

  Fig. 2    Example arguments fi le. This fi le controls the parameters of the design run 
or specifi city calculation. All writing after the # mark is a comment that is not 
read in by the Rosetta program       
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  The simplest method of specifi city prediction [ 2 ,  21 ] is the addition 
of the two lines to the XML fi le. This method allows for multiple 
repacks to be done, but it is not suitable for protocols that involve 
any backbone movement because the backbone is optimized for 
the base pair originally designed for.

    1.    Replace  line a  with  line b  in the XML fi le (Fig.  3 ) and run the 
protocol exactly as described in Subheading  3.1 , but with this 
new XML fi le instead of the original: 

  line a : <DnaInterfacePacker name=DnaPack scorefxn=DNA task_
operations=IFC,IC,AUTOprot,DnaInt/> 

  line b : <DnaInterfacePacker name=DnaPack scorefxn=DNA task_
operations=IFC,IC,AUTOprot,DnaInt binding=1 probe_
specifi city=3/>   

   2.    The number following the added options refers to the number 
of repacks, the lowest energy of which is used in the calculations. 
Three is a good choice for reducing noise in the results. A repack 
is a search similar to the design procedure except that only the 
rotameric state is varied while amino acid types are fi xed.   

   3.    The calculation results are located inside the output pdb fi le 
for each design. Open the fi le with a text-editing program to 
view the data ( see   Note 18 ).    

3.2.1  Automatic 
Specifi city and Binding 
Energy Prediction 
Following 
Fixed-Backbone Design

<dock_design>
<TASKOPERATIONS>
<InitializeFromCommandline name=IFC/> # use the information in the args file to supplement this XML
<IncludeCurrent name=IC/> # includes the rotamers in the input structure (may not want to use)
<RestrictDesignToProteinDNAInterface name= DnaInt base_only =1 z_cutoff =6.0 dna_defs =Z.409.GUA/> #

make the target site substitution of interest (chainID.crystalposition.type) and designate the sphere of residues
surrounding it that are designable and packable

<OperateOnCertainResidues name=AUTOprot> # works with the DnaInt operation to enable residues to be
chosen for design and packing if they are marked as AUTO

<AddBehaviorRLT behavior=AUTO/>
<ResidueHasProperty property=PROTEIN/>
</OperateOnCertainResidues>

</TASKOPERATIONS>
<SCOREFXNS>
<DNA weights=optimizedenergyfxn/> # energy function for design evaluation, this file must be put in the

directory (ie, rosetta_database/scoring/weights/optimizedenergyfxn.wts)
</SCOREFXNS>
<FILTERS>

<FalseFilter name=falsefilter/> # RosettaScripts has the ability to only output designs that pass a designated

</FILTERS>
<MOVERS>

<DnaInterfacePacker name=DnaPack scorefxn=DNA task_operations=IFC,IC,AUTOprot,DnaInt/>
</MOVERS>
<PROTOCOLS>
<Add mover_name=DnaPack/>

</PROTOCOLS>
</dock_design>

filter. This functionality is not being used here.

  Fig. 3    Example RosettaScripts XML fi le. This fi le can be used to set up and modify Rosetta protocols. All writing 
after the # mark is a comment that is not read in by the Rosetta program       
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    The main feature of a specifi city calculation is that it is an exploration 
of rotameric and potentially backbone space in order to fi nd and 
compare the energy of a set of given sequences. Therefore, the 
protocol used for the design procedure may not be optimal for 
doing these analyses. For example, the discreteness of rotamers is 
an approximation that is necessary because of computational limits 
when all amino acids are being considered. However, when the 
amino acid sequence is fi xed, the number of rotamers included in 
the calculation can be greatly increased, and any negative effect of 
the approximation is lessened [ 23 ]. Flexible backbone calculations 
for specifi city enable the protein backbone to be optimized for 
each particular base, reducing any energetic bias for the base pair 
in the crystal structure over the competing base types.

3.2.2  Protocol for 
Specifi city Calculation 
That Is Suitable Following 
Any Design Procedure

AUTO # all protein positions not
explicitly noted are to be marked as
AUTO, the same as using the
AUTOprot operation
start
28 A PIKAA L # forces amino acid L
at position 28 on chain A
83 A PIKAA R
-12 C NATRO # g, fixes the native
rotamer
-11 C NATRO #  c
-10 C NATRO #  a
-9 C NATRO # g
-8 C NATRO #   a
-7 C NATAA #  a, fixes the native
residue type, but allows different
rotamers
-6 C TARGET GUA # c, target
base, same as using the dna_def
option, but DNA is required to be
explicit in the resfile
-5 C NATAA # g
-4 C NATRO # t
-3 C NATRO #  c
-2 C NATRO # g
-1 C NATRO # t
1 D NATRO #   a
2 D NATRO #  c
3 D NATRO # g
4 D NATRO #   a
5 D NATAA #  c
6 D TARGET CYT # g
7 D NATAA # t
8 D NATRO # t
9 D NATRO #  c
10 D NATRO # t
11 D NATRO # g
12 D NATRO #  c

  Fig. 4    Example resfi le. This fi le is used if specifi c protein positions or amino acid 
types need to be forced in the design run. It is an alternative to allowing the loca-
tion of the target substitution to control the designable protein positions. All writ-
ing after the # mark is a comment that is not read in by the Rosetta program       
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    1.    Modify the XML script to fi x the protein sequence of the structure 
being analyzed (most likely the output of a previous design 
calculation). In the TASKOPERATIONS section of the XML 
fi le, the operation to fi x the protein sequence must be added 
by adding the following four lines: 

 <OperateOnCertainResidues name=ProtNoDes> 
 <RestrictToRepackingRLT/> 
 <ResidueHasProperty property=PROTEIN/> 
 </OperateOnCertainResidues> 

  To use this operation, the DnaInterfacePacker mover must be 
changed to the following:  

 <DnaInterfacePacker name=DnaPack scorefxn=DNA task_operati
ons=IFC,IC,AUTOprot,ProtNoDes,DnaInt/>   

   2.    If desired, modify the arguments fi le to increase the number of 
rotamers. The addition of the fl ags “-ex3” and “-ex4” is a 
 reasonable increase. Further increases can be enabled by using 
the “::level #” addition to any of the -ex fl ags. The available 
levels are 1–7. An advanced XML user can add the extra rotam-
ers through the ExtraRotamersGeneric operation and complete 
this specifi city calculation directly after design in one run.   

   3.    Set up four separate runs, one for each base type (or more if 
the target has multiple base-pair substitutions. Do runs for 
whichever competing states are to be compared).   

METHOD_WEIGHTS ref  -0.3 -0.7 -0.75 -0.51 0.95 -0.2 0.8
-0.7 -1.1 -0.65 -0.9 -0.8 -0.5 -0.6 -0.45 -0.9 -1.0 -0.7 2.3 1.1 #
reference weights that are for each amino acid type

fa_atr 0.95 # attractive forces between residues
fa_rep 0.44 # repulsive forces between residues
fa_intra_rep 0.004 # repulsion within a sidechain
fa_sol 0.65 # one component of desolvation
lk_ball 0.325 # newer orientation-dependent desolvation
lk_ball_iso -0.325 # newer orientation-dependent desolvation
hack_elec  0.5 # coulombic electrostatics
fa_dun 0.56 # probability for each approximated rotamer
ref 1 # weight for the reference energies
hbond_lr_bb 1.17 # hydrogen bonding
hbond_sr_bb 1.17 # hydrogen bonding
hbond_bb_sc 1.17 # hydrogen bonding
hbond_sc 1.17 # hydrogen bonding
p_aa_pp 0.64 # probability of amino acid type given
backbone
dslf_ss_dst 0.5 # disulphides
dslf_cs_ang 2 # disulphides
dslf_ss_dih 5 # disulphides
dslf_ca_dih 5 # disulphides
pro_close 1.0 # proline ring closure

  Fig. 5    Example energy function fi le. This energy function was optimized to produce 
high sequence recovery of protein–DNA interactions over a benchmark set of 
proteins [ 23 ]. All writing after the # mark is a comment that is not read in by the 
Rosetta program       
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   4.    Complete a minimum of ten runs per base type for a fi xed- 
backbone approach and at least 50 (4× or more) for any 
approach involving fl exible backbone.   

   5.    Collect the total_score value from inside of each pdb. The 
specifi city can be calculated from the lowest-energy structure 
or from the mean or median of the energies of all structures. 
A comparison of all these three specifi city calculations is most 
informative ( see   Notes 19  and  20 ).   

   6.    The simplest way to access these values without writing a script 
is to execute the command “grep total_score *pdb” in the direc-
tory that contains the pdbs you are interested in analyzing.    

      Follow instructions in Subheading  3.1  with the following described 
variations to the XML script (Fig.  3 ) and arguments fi les (Fig.  2 ). 
Protein backbone fl exibility is accessible through the parser proto-
cols and is in the release version of the code.

    1.    Modify the XML fi le to include a second mover before the 
 standard design mover (DnaInterfacePacker). The line to add is 
 <DesignProteinBackboneAroundDNA name=bb scorefxn=
DNA task_operations=IFC,IC,AUTOprot,DnaInt type=ccd 
gapspan=4 spread=3 cycles_outer=3 cycles_inner=1 temp_ini-
tial=2 temp_fi nal=0.6/>   

   2.    Additionally, the following line must be added after the line 
“<Add mover_name=DnaPack/>”: 
 <Add mover_name=bb/>   

   3.    The DesignProteinBackboneAroundDNA enables the ccd 
backbone movement [ 40 ,  41 ]. An advanced user of 
RosettaScripts and the XML format could explore the protein 
backbone space with alternative protocols and then use those 
structures as input for standard design ( see   Note 21 ).   

   4.    The diversity of the results will be signifi cantly increased; thus, 
more runs are required to explore the design possibilities.    

    Multistate design is a method to explicitly design for one state and 
against others [ 42 ,  43 ]. In the case of protein–DNA design, those 
states are the targeted bases and the alternative bases [ 19 ,  21 ]. This 
method is accessible through the parser protocols and is in the 
release version of the code. Follow instructions in Subheading  3.1  
with the following variations to the XML script (Fig.  3 ).

    1.    Modify the XML fi le by replacing the standard DNA design 
mover with the following mover for doing multistate: 
 <DnaInterfaceMultiStateDesign name=msd scorefxn=DNA 
task_operations=IFC,IC,AUTOprot,DnaInt pop_size=20 
num_packs=1 numresults=0 boltz_temp=2 anchor_offset=15 
mutate_rate=0.8 generations=5/>   

3.3  Advanced 
Design Modes

3.3.1  Protein Flexibility

3.3.2  Multistate Design
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   2.    Additionally, the line “<Add mover_name=DnaPack/>” must 
be replaced with the line: 
 <Add mover_name=msd/>   

   3.    All of the parameters of the genetic algorithm can be varied, 
and the ones in the above line are testing parameters. Refer to 
cited literature [ 19 ,  21 ,  42 ] to identify good starting parame-
ters for a particular design challenge.    

    Crystal structures of engineered proteins indicate that DNA fl exi-
bility is a critical component of target site recognition [ 21 ,  27 ]. 
The DNA movement protocols in Rosetta [ 23 ,  24 ] are more 
experimental than the standard design methods and are undergo-
ing signifi cant development.

    1.    Acquire access to the developer’s version of the code 
( see  Subheading  2  and  Note 22 ).   

   2.    There is no RosettaScripts capability outside of the trunk ver-
sion of Rosetta. Therefore there are separately compiled apps 
required for each protocol instead of one app with access to 
many movers through an XML fi le.   

   3.    Compile the dna_fragment_rebuild_with_motifs app as a fi rst 
step toward using DNA fl exibility, or contact the people listed 
in  Note 22  to receive instructions or begin collaborations to 
access more advanced versions of the code.   

   4.    Exact instructions and arguments fi les required for using this 
app are available in the supplemental material of reference [ 23 ].    

    Multiple low-energy solutions exist for most protein engineering 
challenges. The standard design method tends to produce two or 
three different solutions at the most. Using computation to guide 
library design [ 14 ,  15 ] depends on having multiple designs to 
combine in the selection process. Flexible backbone methods can 
increase the number of solutions, but these solutions may not 
refl ect the true potential movements of backbones because model-
ing of fl exibility is a challenging problem. The high-temp packer 
approach increases the temperature that the algorithm driving the 
design process converges to and thus increases the chance of pro-
ducing a design that is low energy, but not the predicted lowest 
energy. The energy function used in the design process may not be 
perfectly optimized for every design situation. Being able to pro-
duce designs that are not predicted to be the lowest energy, but 
that still contain high-quality contacts, is one way to alleviate the 
impact of an imperfect energy function on the design process. The 
supplemental methods of reference [ 23 ] describes the two changes 
required to use this method. The changes can be made to any ver-
sion of Rosetta, and then the code must be recompiled.  

3.3.3  DNA Flexibility

3.3.4  High-Temp Packer
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  One downfall of the necessary rotamer approximation is that favor-
able interactions can be missed. Design procedures are limited in 
how large of a rotamer set can be used. One way to get around this 
limit is to use motifs, libraries of interactions seen in crystal struc-
tures, to increase rotamer sampling. The protocol consists of a 
search procedure using a greatly expanded rotamer set to see if one 
of these native-like interactions can be made with a target base pair. 
Once rotamers from the expanded set are identifi ed, they are added 
to the standard rotamer set to bias the sampling for these likely 
favorable interactions. An energetic bonus can also be given to 
these rotamers to overcome potential inaccuracies in the energy 
function. Motif-based protocols are only available in the develop-
er’s version of the code, and their usage is described in detail in the 
supplemental methods of reference [ 23 ].

    1.    Acquire access to the developer’s version of the code ( see  
Subheading  2  and  Note 22 ).   

   2.    Compile the motif_dna_packer_design app. This application is 
available in both trunk Rosetta and in the more experimental 
branch of Rosetta that focuses on improving modeling of DNA 
fl exibility.   

   3.    Collect a library of motifs by compiling the dna_motif_collec-
tor app, downloading all protein–DNA complexes under some 
resolution cutoff (<2.8 is reasonable), and running the applica-
tion by following the instructions in reference [ 23 ] .    

   4.    Add the line “special_rot 1.0” to the energy function (Fig.  5 ).   
   5.    Add fl ags to the args fi le ([ 23 ], Fig.  2 ) to load in the motif 

library, set up cutoffs for acceptance of a motif rotamer, pick a 
rotamer level for the expanded motif rotamer library, and pick 
the energetic bonuses to try for these added rotamers.   

   6.    If the trunk version of Rosetta is being used, add the line 
“-patch_selectors SPECIAL_ROT” to the args fi le.    

4        Notes 

     1.    DNA-interacting proteins can have either or both high activity 
and specifi city [ 2 ]. An example of an enzyme with high activity 
and low specifi city is DNA polymerase. Nonspecifi c proteins 
with high activity often use DNA backbone contacts to gain 
binding energy. Homing endonucleases are highly specifi c and 
their levels of activity vary. High-specifi city proteins can also be 
low fi delity, meaning that they can have tolerance at some of the 
nucleotide positions in their target sites while maintaining an 
overall high level of specifi city due to a long target site. Homing 
endonucleases tend to have low fi delity in order to maintain 
activity in the face of genetic drift of their target sites [ 5 ].   

3.3.5  Motifs
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   2.    Another potential cause of high specifi city is indirect readout 
[ 37 ,  38 ]. While direct readout is characterized by direct inter-
actions with the target site, such as hydrophobic packing and 
hydrogen bonds, indirect readout is related to the DNA bend-
ing preferences of a target site sequence. There is some knowl-
edge of the rules of indirect readout, but the energetics of 
indirect readout are just beginning to be incorporated into the 
Rosetta models [ 24 ], and the relationship of DNA bending to 
cleavage of target DNA by endonucleases is not understood.   

   3.    Avoiding a reduction in specifi city is an important consider-
ation when engineering these reagents. Sometimes an endo-
nuclease can maintain high levels of activity while losing 
interface interactions and specifi city. Some target positions are 
nonspecifi c with the native enzymes because of the evolution-
ary pressure to maintain cleavage of a target site that is subject 
to genetic drift [ 5 ]. Computational redesigns at these positions 
can gain interface contacts and have enhanced specifi city [ 19 ].   

   4.    A rotamer is a low-energy conformation of an amino acid [ 22 ]. 
The computational methods rely on these discrete states to make 
the calculations feasible. The protocol to identify the lowest-
energy design relies on a simulated annealing algorithm [ 17 ].   

   5.    While there is no recognition code currently understood for 
homing endonucleases, it is possible that the rules governing 
specifi city will be revealed as more native endonucleases are 
characterized. Collecting data on the specifi city of many 
LAGLIDADG endonucleases, and analysis of their interface 
interactions most likely through homology modeling, is the 
only way to determine whether there is an understandable 
code that can be incorporated into the modeling.   

   6.    David Baker (University of Washington), Philip Bradley (Fred 
Hutchinson Cancer Research Center), Jens Meiler (Vanderbilt), 
Jeffrey Gray (Johns Hopkins), Brian Kuhlman (UNC Chapel 
Hill), Tanja Kortemme (UCSF), Jim Havranek (Washington 
University of St. Louis), Richard Bonneau (NYU), Rhiju Das 
(Stanford), John Karanicolas (University of Kansas), Sarel 
Fleishman (Weizmann Institute of Science), Ora Furman 
(Hebrew University), Ingemar André (Lund University), and 
Sagar Khare (Rutgers).   

   7.    It is possible to do design starting from a high-quality homol-
ogy model instead of from a crystal structure. The model must 
include DNA and it can carry the DNA backbone from a start-
ing template. This procedure requires that there is a homo-
logue of the protein of interest that has been crystallized bound 
to DNA. Procedures to accomplish this work are not currently 
published, but they will be available to the public in the near 
future, and an advanced Rosetta user could accomplish such 
modeling with currently available tools.   
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   8.    A basic understanding of Linux/Unix commands is essential 
for running Rosetta. There are many available resources 
online, and one tutorial for a beginner user is located at the 
following web address:   http://www.ee.surrey.ac.uk/
Teaching/Unix/    .   

   9.    The mode = release command builds the release version instead 
of the debug version, and it is at least ten times faster than of a 
debugging executable. Only leave out the “mode = release” if 
you are developing code that needs to be debugged. The 
“extras = static” command means that static linking of shared 
libraries is done and that the code can be ported to other plat-
forms. The only downside is that the sizes of the compiled 
executables are larger, but that is a worthwhile trade-off for 
portability. The command “-j #” can be used to parallelize the 
build into multiple threads if you are compiling on a multipro-
cessor machine (i.e., -j 20 for splitting work over 20 machines).   

   10.    If the user plans on running parallel multiple trajectories of the 
same code, the output of these trajectories needs to go into 
different directories to avoid overwriting each other. A good 
strategy is to create internal directories labeled job0-job55 (or 
however many runs you want to complete). The command 
“mkdir job{0..55}” will generate those directories. Each paral-
lel trajectory must write to a single one of these directories. 
The other option is to run jobs sequentially by using com-
mands in the arguments fi le or by using capabilities within 
RosettaScripts [ 39 ]. The issue with running jobs sequentially is 
that it is much less time effective if the job is long. The job can 
be long if it is a complex protocol or if the pocket is  multiple 
base pairs because that necessitates that more interface posi-
tions are being designed simultaneously.   

   11.    The program GNU parallel is one (highly recommended) way 
to run multiple jobs in parallel on a multiprocessor system 
that does not have a job submission system in place. The web-
site explaining the program is   http://www.gnu.org/soft-
ware/parallel/    . A command to use GNU parallel to submit 
jobs 5 at a time and to have the results go into separate job# 
directories is the following: nice -19 ./bin/parallel -j 5 'cd {.}; 
./bin/rosettaDNA.static.linuxgccrelease @../args>log;cd ../' 
::: job* &   

   12.    Many tutorials for using Vi are available online (i.e.,   http://
www.infobound.com/vi.html    ).   

   13.    The XML fi les are a part of RosettaScripts [ 39 ]. This system 
for protocol development is an integral part of the recent ver-
sions of Rosetta. It provides a fl exible environment in which 
movers and operations can be recombined into different pro-
tocols without having to recompile Rosetta.   
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   14.    Change the 5th and 7th columns of the following fi ve lines in 
the atom_properties.txt fi le (./rosetta_database/chemical/
atom_type_sets/fa_standard/atom_properties.txt) to the val-
ues shown here: 
 Phos P 2.1500 0.5850 −4.1000 3.5000 14.7000 
 Narg N 1.7500 0.2384 −10.0000 6.0000 11.2000 DONOR 

ORBITALS 
 NH2O N 1.7500 0.2384 −7.8000 3.5000 11.2000 DONOR 

ORBITALS 
 Nlys N 1.7500 0.2384 −16.0000 6.0000 11.2000 DONOR 
 ONH2 O 1.5500 0.1591 −5.8500 3.5000 10.8000 

ACCEPTOR SP2_HYBRID ORBITALS 
 Also change the fi fth column of the three HC atoms in the 
LYS.params fi le to the value 0.48 from 0.33 to increase the 
positive charge of lysine. The LYS.params fi le is found here: 
 “./rosetta_database/chemical/residue_type_sets/fa_stan-
dard/residue_types/l-caa/LYS.params”   

   15.    If running many jobs on a multiprocessor system, always sub-
mit a single test run to confi rm that all paths are correct and 
that all necessary fi les are included.   

   16.    The number of runs that should be completed depends on how 
many base pairs are being mutated in the target site. The num-
ber of base pairs controls the number of interface positions that 
are designed (unless a resfi le is used,  see  Fig.  4 ). As a starting 
point, a minimum of ten runs should be completed for a fi xed-
backbone standard design for a one base-pair substitution. At 
least 50 runs should be completed for a single base-pair pocket 
with fl exibility (either protein or DNA). A triple base-pair 
pocket with backbone fl exibility needs several hundred runs 
(300–500) to assess the full range of low-energy solutions.   

   17.    These calculations could also be used to improve the models 
by comparison of results with experimental activity assays and 
to predict the binding sites for proteins with unknown target 
preferences.   

   18.    Effi ciency can be greatly increased if a script is written to pull 
these numbers out of each designed pdb fi le.   

   19.    It is recommended that either the mean or median value of the 
total_energy for all structures be used for specifi city prediction, 
rather than the score of the lowest-energy structure. The mean 
or median is a more accurate predictor because the protocol 
can generate outlier structures with energies much lower than 
the majority and these outliers are as likely to represent the 
actual energetic and structural state of the complex. This rec-
ommendation is especially true for protocols involving any 
amount of backbone fl exibility.   
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   20.    The calculation of specifi city is based on the Boltzmann distri-
bution. The value of  k  B  T  can be changed, but a value of 1 is 
reasonable. The equation for calculating specifi city for a gua-
nine base pair is (2.718^0)/(2.718^0 + 2.178^(−Δ E  G-A ) + 
2.178^(−Δ E  G-C ) + 2.178^(−Δ E  G- T   )).   

   21.    Only the DesignProteinBackboneAroundDNA mover will 
limit protein backbone movement to around the target base 
pair. Other methods of protein backbone movement will 
require another way of designating the regions that should be 
fl exible.   

   22.    Contact Summer Thyme at sthyme@gmail.com or Philip 
Bradley at pbradley@fhcrc.org for information on the most 
updated branch of the developer’s code needed to use DNA 
fl exibility.         
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